Final

Phase I Remedial Investigation for SWMU 56

PERFORMANCE-BASED RESTORATION JOINT BASE ANDREWS NAVAL AIR FACILITY WASHINGTON CAMP SPRINGS, MARYLAND

Contract W9128F-10-D-0025, DO #0002

OCTOBER 2013 VERSION: 00

Prepared for:

U.S. Air Force 11th CES/CEAN 3466 North Carolina Avenue Joint Base Andrews, Maryland 20762-4803 U.S. Army Corps of Engineers, Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

Prepared by:

Bay West, Inc. 5 Empire Drive St. Paul, MN 55103 (651) 291-0456

REPORT CERTIFICATION STATEMENT

Final

Phase I Remedial Investigation Report

October 2013 Version: 00

Phase I Remedial Investigation at SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Prepared Under:

Contract Number: W9128F-10-D-0025 Delivery Order No. 0002

Prepared for:

U.S. Army Corps of Engineers – Omaha District

Prepared by:

Bay West, Inc. 5 Empire Drive St Paul, Minnesota 55103 (651) 291-0456

The information contained in this report is true and correct to the best of my knowledge.

Rob Heimbach, PG Project Manager, Bay West, Inc.

<u>10/31/2013</u> Date

Table of Contents

EXEC	JTIVE SU	MMARYE	S-1
1.0		JCTION	
1.1	Project A	uthorization	1-1
1.2	Objective	and Scope	1-1
1.3	Site Loca	tion and Description	1-3
1.4	Site Histo	Dry	1-3
1.5	Previous	Investigations	1-4
1.	5.1 ST-1	14 UST Tank Removal (1992)	1-4
1.		nedial Actions (2007-2010)	
1.	5.3 ST1	4-MW35 High pH Investigation (2009)	1-4
1.	5.4 ST-1	14 Long-Term Monitoring (2010)	1-4
1.	5.5 ST1	4-MW35 Groundwater Sampling Event (2011)	1-5
1.	5.6 ST1	4-MW35 Groundwater Sampling Event (2012)	1-5
2.0		AL CHARACTERISTICS	
2.1	Geology.		2-1
		ional Geology	
2.	1.2 Site	Geology	2-1
2.2	Hydrogeo	blogy	2-1
	2.1 Reg	ional Hydrogeology	2-1
		Hydrogeology	
	Surface V	Vater Hydrology	2-2
		ional Surface Water Hydrology	
		Surface Water Hydrology	
2.4		phy and Land Use	
		ewide Demography and Land Use	
		Demography and Land Use	
		and Biology	
2.		ewide Habitats and Biology	
	2.5.1.1		
	2.5.1.2	Terrestrial Habitats	
	2.5.1.3	Biota	
2.		Habitat and Biology	
	2.5.2.1	Wetland and Aquatic Habitat	
	2.5.2.2	Terrestrial Habitats	
	2.5.2.3	Biota	
		ogy and Climate	
3.0		REMEDIAL INVESTIGATION PROCEDURES	
		age Review	
		nits and Utility Locate	
		V35 pH Purge Test	
		nental Sampling	
3.		Engineering Storage Yard Area of Interest	
	3.4.1.1	Soil Sampling	
~	3.4.1.2		
3.		ding 3459 Area of Interest	
	3.4.2.1		
o -	3.4.2.2	Groundwater Sampling	
3.5	Sample A	Analytical Methods	3-3

3.6 Sample Quality Assurance/Quality Control Measures	
3.6.1 Field Quality Assurance/Quality Control	.3-3
3.6.2 Laboratory Quality Assurance/Quality Control	3-4
3.6.3 Data Validation and Verification	.3-4
3.6.4 Decontamination Procedures	.3-4
3.7 Investigation Derived Waste	.3-4
4.0 PHASE I REMEDIAL INVESTIGATION RESULTS	4-1
4.1 Aerial Image Review	
4.2 ST14-MW35 pH Purge Test	
4.3 Environmental Sampling	
4.3.1 Civil Engineering Storage Yard Area of Interest	
4.3.1.1 Soil Sampling	
4.3.1.2 Groundwater Sampling	
4.3.2 Building 3459 Area of Interest	
4.4 Sample Quality Assurance/Quality Control Measures	
4.5 Investigation Derived Waste	
5.0 FATE AND TRANSPORT	
5.1 Fate of Chemicals Exceeding Criteria	
5.2 Potential Transport and Exposure Pathways	
5.2.1 Soil	
5.2.2 Surface Water and Sediment	
5.2.3 Groundwater	
5.2.4 Air	.5-2
6.0 HUMAN HEALTH SCREENING CRITERIA COMPARISON	6-1
6.1 General Approach	.6-1
6.2 Human Health Criteria Comparison Evaluation	.6-1
6.2.1 Civil Engineering Storage Yard Area of Interest	
6.2.1.1 Soil	.6-1
6.2.1.2 Groundwater	
6.2.2 Building 3459 Area of Interest	
6.2.2.1 Soil	
6.2.2.2 Groundwater	
6.3 Transport and Exposure Pathways	
6.3.1 Civil Engineering Storage Yard Area of Interest	
6.3.1.1 Soil	
6.3.1.2 Groundwater	
6.3.2 Building 3459 Area of Interest	
6.4 Human Health Screening Criteria Comparison Summary	
7.0 ECOLOGICAL SCREENING CRITERIA COMPARISON	
7.1 General Approach	
7.2 Ecological Screening Criteria Comparison Evaluation	.7-1
7.2.1 Civil Engineering and Storage Yard Area of Interest	.7-1
7.2.1.1 Soil	
7.2.1.2 Groundwater	.7-2
7.2.2 Building 3459 Area of Interest	
7.2.2.1 Soil	
7.2.2.1 Groundwater	
7.3 Transport and Exposure Pathways	
7.3.1 Civil Engineering and Storage Yard Area of Interest	7_2
	<u>-</u> Z
7.3.1 Building 3459 Area of Interest	7_2

7.4	Ecological Screening Criteria Comparison Summary	7-3
8.0	CONCEPTUAL SITE MODEL AND CONCLUSIONS	8-1
8.1	Conceptual Site Model	
8.	.1.1 Civil Engineering Storage Yard Area of Interest Conceptual Site Model	8-1
	8.1.1.1 Soil	8-1
	8.1.1.2 Groundwater	8-1
8.	.1.2 Building 3459 Area of Interest Conceptual Site Model	8-2
	8.1.2.1 Soil	8-2
8.2	Data Gaps	8-2
	.2.1 Civil Engineering Storage Yard Area of Interest Data Gaps	
	.2.2 Building 3459 Area of Interest Data Gaps	
9.0	RECOMMENDATIONS	
10.0	REFERENCES	10-1

List of Figures

- Figure 1-1 Site Location Map
- Figure 1-2 Existing Features and Historical Investigations
- Figure 3-1 Soil Boring and Temporary Monitoring Well Locations
- Figure 4-1 ST14-MW35 pH Purge Test
- Figure 4-2 Geologic Cross Section A-A'
- Figure 8-1 Civil Engineering Storage Yard AOI Soil Conceptual Site Model
- Figure 8-2 Civil Engineering Storage Yard AOI Groundwater Conceptual Site Model
- Figure 8-3 Building 3459 AOI Soil Conceptual Site Model
- Figure 8-4 Soil CECs
- Figure 8-5 Groundwater CECs

List of Tables

- Table 4-1
 ST14-MW35 pH Purge Test at the Civil Engineering Storage Yard AOI
- Table 4-2
 Soil Field Screening Summary at the Civil Engineering Storage Yard AOI
- Table 4-3
 Soil Detections at the Civil Engineering Storage Yard AOI
- Table 4-4
 Groundwater Detections at the Civil Engineering Storage Yard AOI
- Table 4-5 Soil Detections at the Building 3459 AOI
- Table 6-1
 HHSCC for Soil at the Civil Engineering Storage Yard AOI
- Table 6-2
 HHSCC for Groundwater at the Civil Engineering Storage Yard AOI
- Table 7-1
 Soil Ecological Screening at the Civil Engineering Storage Yard AOI
- Table 7-2
 ESCC Data Summary for Soil at the Civil Engineering Storage Yard AOI
- Table 7-3
 Groundwater Ecological Screening at the Civil Engineering Storage Yard AOI
- Table 7-4
 ESCC Data Summary for Groundwater at the Civil Engineering Storage Yard AOI
- Table 7-5
 Soil Ecological Screening at the Building 3459 AOI
- Table 7-6ESCC Data Summary for Soil at the Building 3459 AOI

List of Appendices

- Appendix A ST-14 TCE Plume Map
- Appendix B Historical Aerial Images
- Appendix C Field Documentation
 - C-1 Soil Boring Logs
 - C-2 Soil Sample Collection Forms
 - C-3 Groundwater Sampling Forms

- C-4 Investigation-Derived Waste Disposal Documentation
- C-5 Photo Log
- Appendix D Data Validation Report
- Appendix E Laboratory Analytical Packages (on attached DVD)
- Appendix F Regulatory Comment Form

Acronyms and Abbreviations

	Act onlyins and
µg/L	micrograms per liter
	degrees Fahrenheit
	automated data review
AFB	Air Force Base
AOI	area of interest
	Bay West, Inc.
	Basewide Ecological Risk
	Assessment
bgs	below ground surface
	Biological Technical Assistance
B1/(0	Group
BIEX	benzene, toluene, ethylbenzene,
	and xylene
BTOC	below top of casing
	chemical exceeding criteria
CERCLA	Comprehensive Environmental
	Response, Compensation, and
	Liability Act
COC	chemical of concern
	Code of Maryland Regulations
CSM	conceptual site model
СТ	carbon tetrachloride
	cis-1,2-dichloroethene
	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
delta BHC	delta hexachlorocyclohexane
	Defense Environmental
DERA	
	Restoration Account
DO	Delivery Order
	Department of Defense
	direct push technology
	diesel range organics
ESCC	ecological screening criteria
	comparison
EcoSSI s	ecological soil screening levels
	Environmental Restoration
ERP	
	Program
FFA	Federal Facilities Agreement
	gasoline range organics
	human health screening criteria
_	comparison
HRS	hazard rating score
	investigation derived waste
IRΔ	Joint Base Andrews Naval Air
	Facility Washington
LCS	laboratory control sample
LCSD	laboratory control sample
	duplicate
	upildate

bbreviations		
LOD	. limit of detection	
	. limit of quantitation	
	. maximum contaminant level	
MCPP	2-4-chloro-2-	
	methylphenoxypropanoic	
	acid	
MDE	. Maryland Department of the	
	Environment	
MEK	2-butanone	
mL	. milliliter	
mL/min	. milliliters per minute	
MS/MSD	. matrix spike/matrix spike	
	duplicate	
NCP	. National Oil and Hazardous	
	Substances Contingency	
	Plan	
NPL	. National Priorities List	
	nephelometric turbidity unit	
	. preliminary assessment	
PAH	. polynuclear aromatic	
	hydrocarbon	
PBR	.performance-based	
	restoration	
	. polychlorinated biphenyl	
	. photoionization detector	
••	. parts per million	
	. quality control	
	. quality systems manual	
	remedial investigation	
	record of decision	
	regional screening level	
SB		
	site investigation	
	. statement of objectives	
5000	. semi-volatile organic	
	compound	
	. solid waste management unit	
	. target analyte list . trichloroethene	
	. target compound list . TestAmerica Laboratories,	
restAmenca.	Inc.	
TIC	tentatively identified	
110	compound	
	. temporary monitoring well	
	. total petroleum hydrocarbons	
	. Uniform Federal Policy for	
	Quality Assurance Project	
	Plan	

USACE	.United States Army Corps of
	Engineers
USAF	.United States Air Force
USCS	Unified Soil Classification
	System
USEPA	United States Environmental
	Protection Agency
LICT	underground storege tople

UST.....underground storage tank

	upper tolerance limit unlimited use/unrestricted
	exposure
VC	. vinyl chloride
VOC	volatile organic compound
WSSC	. Washington Suburban
	Sanitary Commission

EXECUTIVE SUMMARY

A Phase I remedial investigation (RI) was conducted at Solid Waste Management Unit (SWMU) 56 at Joint Base Andrews Naval Air Facility Washington (JBA), located near the community of Camp Springs, Maryland. The Phase I RI objective is to determine whether hazardous substances were released to the environment and/or whether hazardous substances have impacted the environment exceeding human health or environmental exposure criteria in accordance with the SWMU 56 Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP; Bay West, 2012). This Phase I RI consists of a sampling and reporting effort equivalent to preliminary assessment/site investigation (PA/SI) as defined by the National Oil and Hazardous Substances Contingency Plan (NCP), minus the hazard rating score (HRS) plus a conceptual site model (CSM) defining exposure pathways. This Phase I RI Report presents the field investigation results, human health and ecological screening criteria, chemicals exceeding criteria (CECs), site-specific CSM, conclusions, and recommendations.

SWMU 56 is composed of two areas of interest (AOIs); the Civil Engineering Storage Yard AOI and the Building 3459 AOI. The Civil Engineering Storage Yard AOI includes the area surrounding Monitoring Well ST14-MW35, which has exhibited elevated pH readings during monitoring events conducted for Environmental Restoration Program (ERP) Site ST-14. Additionally, the Civil Engineering Storage Yard AOI historically stored construction material including lumber, paint, thinners, roofing material, asphalt, pipes and pipe fittings, used and new household appliances, non-polychlorinated biphenyl (PCB) transformers, and miscellaneous drums. Building 3459 AOI is the site of former Building 3459, which was historically used as a pesticides mixing facility.

To further investigate the high pH with this Phase I RI, a purge test was conducted at ST14-MW35. pH was monitored as groundwater was purged at varying rates for approximately five hours. pH in ST14-MW35 decreased from 10.28 to 6.59 while purging at 500 milliliters per minute (mL/min) for approximately two hours. When the purge rate was reduced to 200 mL/min, the groundwater pH stabilized at 6.92. Based on the results of the purge test, the high pH in ST14-MW35 is attributed to the construction of the well. In addition, the high pH conditions are localized to ST14-MW35, as confirmed by the respective pH measurements of 4.97 and 5.00 from Temporary Monitoring Well (TMW)-01, located 5 feet from ST14-MW35, and TMW-09, located 20 feet from ST14-MW35.

Nine soil borings (SB)/TMWs were advanced in the Civil Engineering Storage Yard AOI. A total of 15 soil samples (including one field duplicate) and 10 groundwater samples (including one field duplicate) were collected from the TMWs and analyzed for:

- Target compound list (TCL) volatile organic compounds (VOCs);
- TCL polynuclear aromatic hydrocarbons (PAHs);
- TCL semi-volatile organic compounds (SVOCs);
- Gasoline range organics (GRO)/diesel range organics (DRO);
- TCL pesticides;
- TCL PCBs;
- TCL herbicides; and
- Target analyte list (TAL) metals.

Only benzo[a]pyrene, arsenic, and barium were detected in soil samples at concentrations exceeding the United States Environmental Protection Agency (USEPA) residential regional screening levels (RSLs) Based on site conditions and current and future land use of the site, exposure pathways are complete for the intrusive site worker via dermal contact, ingestion, and

dust inhalation of surface and subsurface soils; therefore, benzo(a)pyrene, arsenic, and barium are considered to be a potential risk to human receptors.

VOCs [chloroform and trichloroethene (TCE)], PAHs (benzo[b]fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene), GRO, DRO, a herbicide [2-4-chloro-2-methylphenoxypropanoic acid (MCPP)], and metals (aluminum, arsenic, chromium [total], cobalt, iron, lead, and manganese) were detected in the groundwater samples at the Civil Engineering Storage Yard AOI at concentrations that exceeded the USEPA residential RSL, USEPA maximum contaminant level (MCL) or MDE Interim Cleanup Standards for GRO and DRO. Based on current conditions and future uses of the site, exposure pathways are potentially complete for the intrusive site worker via dermal contact and ingestion.

Shallow soil samples were collected from four locations within the former building footprint at the Building 3459 AOI and analyzed for pesticides and herbicides. None of the soil samples exceeded the USEPA residential RSLs; therefore, soil at Building 3459 AOI does not present a risk to current or future human receptors. Groundwater at Building 3459 AOI was not investigated because, based on the known building operational history, possible herbicide and pesticide contamination would be limited to surface soils.

Exposure pathways for ecological receptors at both the Civil Engineering Storage Yard and the Building 3459 AOIs are not complete due to the lack of habitat at SWMU 56; therefore, no chemicals pose a potential risk to ecological receptors at SWMU 56.

Benzo(a)pyrene, arsenic, and barium are the only soil CECs (exceeds the residential RSLs) identified at the Civil Engineering Storage Yard AOI. The groundwater CECs (that exceed the respective RSLs, MCLs, or MDE interim residential cleanup standards) identified at the Civil Engineering Storage Yard AOI include:

- Chloroform;
- Arsenic;
- Lead;
- Trichloroethene;
- Benzo[b]fluoranthene;
- Dibenz(a,h)anthracene;
- Indeno[1,2,3-cd]pyrene;

- DRO/GRO;
- MCPP;
- Aluminum;
- Chromium (Total);
- Cobalt;
- Iron;
- Manganese; and
- Thallium.

To evaluate the CECs presented above at the Civil Engineering Storage Yard AOI, an RI is recommended. The RI may include the following:

- Investigation of barium-contaminated soil in the vicinity of TMW-06;
- Investigation of chloroform in the vicinity of TMW-04;
- Investigation of groundwater CECs in the vicinity of TMW-02;
- Analysis of hexavalent chromium in soil;
- Investigation of the source of TCE contamination in groundwater;
- Investigation of Vapor Intrusion Pathways; and,
- Site-specific baseline risk assessment.

Additional investigation at the Building 3459 AOI is not recommended as no CECs were identified.

1.0 INTRODUCTION

1.1 **Project Authorization**

This Phase I Remedial Investigation (RI) Report has been prepared for Solid Waste Management Unit (SWMU) 56 at Joint Base Andrews Naval Air Facility Washington (JBA), located near the community of Camp Springs, Maryland (**Figure 1-1**). The United States Army Corps of Engineers (USACE) – Omaha District has contracted Bay West, Inc. (Bay West) to perform the performance-based restoration (PBR) at multiple sites at JBA under Contract Number W9128F-10-D-0025, Delivery Order (DO) No. 0002.

In May 1999, JBA was added to the National Priorities List (NPL). The National Superfund electronic database identification number for the base is MD0570024000. SWMU 56 was identified in Section 6.7.2.12 of the Federal Facilities Agreement (FFA) between the United States Environmental Protection Agency (USEPA) and United States Air Force (USAF) (USEPA/USAF, 2011). A Phase I RI, as defined in the PBR Statement of Objectives (SOO), consists of a sampling and reporting effort equivalent to Preliminary Assessment and Site Inspection (PA/SI), as defined in the National Oil and Hazardous Substances Contingency Plan (NCP) requirements, without the Hazard Rating Score (USAF, 2011).

SWMU 56 has previously been referred to as the Civil Engineering Storage Yard near Building 3459 in other historical reports or as HW-2 in the September 2011 FFA for JBA.

1.2 Objective and Scope

The objective of this Phase I RI is to determine whether hazardous substances were released to the environment and/or whether hazardous substances have impacted the environment exceeding human health or environmental exposure criteria. SWMU 56 is identified on **Figure 1-2** as the Civil Engineering Storage Yard Area of Interest (AOI) and the Building 3459 AOI. The Civil Engineering Storage Yard AOI includes the area surrounding Monitoring Well ST14-MW35, which has exhibited elevated pH readings during monitoring events conducted for the Environmental Restoration Program (ERP) Site ST-14. The Building 3459 AOI includes the former Building 3459 footprint. The building, which was demolished in 1994, was reportedly used as a pesticide mixing and storage facility; however, there have been no reports or evidence of releases (URS, 2009).

The work covered under this Phase I RI includes evaluating the source of the elevated pH in ST14-MW35 and determining whether chemicals exceeding criteria (CECs) are present or absent within SWMU 56. Prior to this investigation, the cause for the elevated pH levels in ST14-MW35 was unknown. Volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, and total petroleum hydrocarbons (TPH) have been detected at ST14-MW35 (AECOM, 2010); however, none of the detections have exceeded the screening criteria. At the Building 3459 AOI, it was not known if contamination from historical practices existed at the site.

The following analytical methods were completed for both soil and groundwater to determine CECs, if any, at the Civil Engineering Storage Yard AOI:

- Target Compound List (TCL) VOCs;
- TCL polynuclear aromatic hydrocarbons (PAHs);
- TCL SVOCs;
- Gasoline range organics (GRO)/diesel range organics (DRO);
- TCL pesticides;

- TCL polychlorinated biphenyls (PCBs);
- TCL herbicides; and
- Target Analyte List (TAL) metals.

The following analyses were completed for the surface soil samples collected to determine CECs, if any, at the Building 3459 AOI:

- TCL pesticides; and
- TCL herbicides.

The sections of this Phase I RI are organized as follows:

Section 1.0 – Introduction: This section provides the introduction, Phase I RI purpose and objective, and site history.

Section 2.0 – Physical Characteristics: This section provides the Basewide and site-specific geology, hydrogeology, surface water hydrology, land use, and habitat descriptions.

Section 3.0 – Phase I Remedial Investigation Procedures: This section describes the procedures used during this Phase I RI.

Section 4.0 – Phase I Remedial Investigation Results: This section describes the results of the Phase I RI and the screening criteria exceedances.

Section 5.0 – Fate and Transport: This section describes the fate and transport for the contaminated media, if any.

Section 6.0 – Human Health Screening Criteria Comparison: This section provides the comparison of detected concentrations against human health screening criteria.

Section 7.0 – Ecological Screening Criteria Comparison: This section provides the comparison of detected concentrations against ecological screening criteria.

Section 8.0 – Conceptual Site Model and Conclusions: This section provides the conclusions and conceptual site model (CSM).

Section 9.0 – Recommendations: This section provides the recommendations for this site.

Section 10.0 – References: This section provides the references cited in the Phase I RI.

Appendix A – ST-14 TCE Plume Map: This appendix includes the current ST-14 TCE plume map from the 2012 RA-O Report.

Appendix B – Historical Aerial Images: This appendix includes the historical aerial images used during the Phase I RI data review.

Appendix C – Field Documentation: This appendix includes the field documentation from the field work stage of the Phase I RI.

Appendix D – Data Validation Report: This appendix includes the data validation reports from the data collected during the Phase I RI.

Appendix E – Laboratory Analytical Packages: This appendix includes the laboratory analytical packages from the data collected during the Phase I RI.

Appendix F – Regulatory Comment Worksheet: This appendix includes the comment worksheet in Microsoft Word format.

1.3 Site Location and Description

JBA is located in Prince George's County, near the community of Camp Springs, Maryland. Washington, D.C. is located approximately five miles northwest of the base. The base occupies approximately 4,300 acres and consists of runways, airfield operations, an industrial area, housing, and recreational facilities (**Figure 1-1**).

JBA was originally established as the Camp Springs Army Air Field on August 25, 1942. The name was changed to Andrews Air Force Base (AFB) in 1947, when the USAF was established as a separate military service. The base has served as headquarters at various times for the Continental Air Command, the Strategic Air Command, the Military Air Transport Service, and the Air Force Systems Command. The current major tenant command is the Andrews Naval Air Facility. The missions of the Andrews Naval Air Facility are flight operations and photographic reconnaissance. In 1992, Andrews AFB became an Air Mobility Command Base. In 2009, the name of the base was officially changed to Joint Base Andrews Naval Air Facility Washington to more accurately reflect the joint nature of the missions and operations at the base.

A fenced area (designated the Civil Engineering Storage Yard) is bounded by North Carolina Avenue on the north, Pennsylvania Avenue on the east, Tennessee Avenue on the west, and Tampa Street on the south. **Figure 1-1** shows the location of SWMU 56 within JBA. Within the fenced Civil Engineering Storage Yard, SWMU 56 consists of two AOIs. The Civil Engineering Storage Yard AOI is located east of Building 3443, south of Buildings 3449, 3440, and 3434, and both west and north of the Storage Yard fence line (460 feet by 200 feet) (**Figure 1-2**). The Building 3459 AOI encompasses the previously demolished Building 3459 footprint (**Figure 1-2**). Historical reports indicated that SWMU 56 is a 75-foot by 150-foot area near former Building 3459. Based on historical aerials from 1943 to 1990 (included in **Appendix B**), it appears that the area used for storage may have moved locations over the years.

SWMU 56 is also located directly adjacent to and within the groundwater contaminant plume associated with the ERP Site ST-14. ST-14 has a number of permanent monitoring wells and injection wells within and in the vicinity of SWMU 56 as shown on **Figure 1-2**. Monitoring wells ST14-MW34 and ST14-MW35 are located within or adjacent to SWMU 56 and ST14-MW33 and ST14-LCB2 are located down gradient of SWMU 56.

1.4 Site History

As previously described, SWMU 56 is located directly adjacent to and within the groundwater contaminant plume associated with ST-14. Two 10,000-gallon underground storage tanks (USTs), a 250-gallon waste motor oil UST, and petroleum-contaminated soil were removed from ST-14 between 1983 and 1986. ST-14 has a number of monitoring wells associated with the selected remedy, one being ST14-MW35, which is located within the Civil Engineering Storage Yard AOI. ST14-MW35 has exhibited a persistently high pH since it was installed in 2002.

The Civil Engineering Storage Yard AOI associated with SWMU 56 historically stored construction materials including lumber, paint, thinners, roofing material, asphalt, pipes and pipe fittings, used and new household appliances, non-PCB transformers, and miscellaneous drums. It was reported that drums with "flammable" and "hazardous" warning labels and additional drums containing viscous asphalt were observed to be leaking (MDE, 1988). SWMU 56 was also observed to have no retention curb or collection trench installed around the site to collect leaking materials or stormwater from migrating off-site. During the site visit conducted on September 13, 2011, there were small isolated secondary containment pads present that had retention curbs to contain possible material spillage on the containment pad.

Based on a review of historical aerials from 1943 to 1990 conducted during this Phase I RI, Building 3459 was located northeast of the Civil Engineering Storage Yard AOI. The building

1-3

was reportedly used as a pesticide mixing and storage facility; however, there have been no reports or evidence of a release (URS, 2009).

1.5 Previous Investigations

To date, no removal actions or RIs have been completed at SWMU 56; however, environmental investigations have been conducted at the base since 1985 and are being conducted under the USAF's ERP. The ERP was developed by the Department of Defense (DoD) in 1981 to identify, investigate, and clean up environmentally contaminated sites on military bases. SWMU 56 was identified as a compliance restoration site through the ERP, following the discovery of the persistently high pH (greater than 11) at ST14-MW35 during the ST-14 Long-Term Groundwater Monitoring Program. ST14-MW35 was installed in 2002 (Shaw, 2005) and has since been monitored as part of the ST-14 ERP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the ST-14 Record of Decision (ROD) dated September 2007.

1.5.1 ST-14 UST Tank Removal (1992)

Nearby ST-14 has undergone a number of investigations since 1992 following the removal of two 10,000-gallon USTs, a 250-gallon waste motor oil UST, and petroleum-contaminated soil between 1983 and 1986 (D&M, 1994).

1.5.2 Remedial Actions (2007-2010)

ST-14 currently has an approved ROD (USEPA, 2007). The primary contaminants of concern (COCs) identified for ST-14 include: trichloroethene (TCE), cis-1,2-dichloroethene (DCE), vinyl chloride (VC), carbon tetrachloride (CT), and benzene, toluene, ethylbenzene, and xylenes (BTEX). AECOM implemented remedial actions for ST-14 between 2007 and 2010, including a series of injections of a carbon substrate (sodium lactate) to enhance reductive dechlorination through a series of injection points and wells. Several sodium lactate injection events were completed within and adjacent to SWMU 56 (AECOM, 2010).

1.5.3 ST14-MW35 High pH Investigation (2009)

In 2009, URS completed the Final Evaluation Report for Air Force Compliance Clean-Up Sites, Identification and Evaluation of Defense Environmental Restoration Account (DERA) Eligibility report which included a shallow subsurface soil (0 to 2 feet below ground surface [bgs]) investigation surrounding ST14-MW35 to evaluate possible causes of the high pH detections in the groundwater. The locations of the previous subsurface soil samples are shown on **Figure 1-2**. Based on the 2009 analytical results, VOCs, SVOCs, and pesticide compounds were detected; however, they did not exceed the USEPA regional screening levels (RSLs) for soil. DRO and GRO were also detected, but did not exceed Maryland Department of the Environment (MDE) cleanup standards (MDE, 2008) as there are no DRO and GRO RSLs for comparison. PCBs were not detected (URS, 2009). The horizontal and vertical extents of the VOC, SVOC, pesticide, and TPH detections were not evaluated at that time. In addition, a source was not identified.

1.5.4 ST-14 Long-Term Monitoring (2010)

In June 2010, AECOM completed a Long-Term Monitoring Report for ST-14 which identified ST14-MW35 on the eastern boundary of the ST-14 TCE plume. All other contaminant plumes associated with ST-14 are located north of ST14-MW35. The report also stated that the high pH condition at ST14-MW35 is likely caused by grout contamination in the monitoring well and is not suspected to be representative of the local aquifer conditions (AECOM, 2010). During the RI

and long-term monitoring work completed at ST-14, ST14-MW35 has been purged at varying flow rates. At increased purge flow rates, the pH is initially high, but then decreases with time.

1.5.5 ST14-MW35 Groundwater Sampling Event (2011)

In April 2011, AMEC completed a sampling event at ST14-MW35. The groundwater was analyzed for VOCs, SVOCs, dissolved gases, pesticides, PCBs, and metals. Four VOCs and several metals were detected in the groundwater. All detections did not exceed the USEPA residential RSLs and maximum contaminant levels (MCLs) for groundwater.

1.5.6 ST14-MW35 Groundwater Sampling Event (2012)

In November 2012, AMEC completed a remedial action-operations sampling event at ST14-MW35. The groundwater was analyzed for VOCs, dissolved gasses and metals. Six VOCs, one dissolved gas, and several metals were detected in the groundwater. None of the detections exceeded USEPA residential RSLs and MCLs for groundwater except for TCE. TCE was detected at a concentration of 12 micrograms per liter (μ g/L), which exceeds the USEPA residential RSL (0.44 μ g/L) and MCL (5 μ g/L). A map showing the current ST-14 TCE plume configuration is included in Appendix A.

2.0 PHYSICAL CHARACTERISTICS

2.1 Geology

2.1.1 Regional Geology

JBA is located within the Atlantic coastal plain physiographic province, 12 miles east of the Atlantic coastal plain and Appalachian piedmont fall line. The coastal plain is characterized by an eastward thickening wedge of unconsolidated sediments, which overlap the rocks of the eastern piedmont. These unconsolidated sediments consist of gravel, sand, silt, and clay, which were derived from erosion of the piedmont and mountains to the west. The Coastal Plain deposits range in age from Cretaceous to Recent and are approximately 1,600 feet thick in the JBA area. The upper 300 feet consists of, from stratigraphically highest to lowest (i.e., from youngest to oldest): the Upland (Pliocene) Deposits (approximately 3 to 55 feet thick); the Calvert Formation (70 to 100 feet thick); the Nanjemoy Formation (70 to 125 feet thick); the Marlboro Clay (0 to 20 feet thick); and the Aquia Formation (100 to 140 feet thick). The Coastal Plain sediments overlie Pre-Cambrian-age metamorphic crystalline basement rocks (Earth Tech, 2001).

Except for the Upland deposits, the Coastal Plain formations strike northeast and dip gently to the southeast. The Upland Deposits consist of interbedded brown to gray silt and clay, sand and gravel. The Calvert Formation is part of the Chesapeake Group in Maryland, which also includes the Choptank and St. Mary's formations. The Calvert Formation on the western shore is subdivided into the basal Fairhaven Member and the overlying Plum Point Marl Member. The Fairhaven Member ranges in color from brown to white and consists mostly of diatoms in a very fine quartz matrix. Some calcareous material may be present at base of member. The Plum Point Member is described as a series of bluish green to grayish brown and buff sandy clay and marls, containing organic remains, including diatoms (CH2M Hill, 2004).

2.1.2 Site Geology

The land surface at SWMU 56, like most of JBA, is generally flat. Soils have not been specifically logged at SWMU 56 in previous investigations; however, soils at ST-14, which encompasses SWMU 56, consist of partially saturated Quaternary Upland Deposits comprised of three stratigraphic lithologies: silt-clay; an intermediate sand and gravel stratum; and underlying silty fine sand (IT, 2000). The Calvert Formation is generally encountered at 38 to 40 feet bgs in the upgradient portion of the ST-14 area, although it outcrops a few feet below the top of the bank along the Cabin Branch (Shaw, 2005). The Miocene-age Calvert Formation consists of a thick stratigraphic sequence of lower permeability interbedded greenish-gray silt, clay, and fine sand.

2.2 Hydrogeology

2.2.1 Regional Hydrogeology

Both unconfined and confined aquifers are present in Prince George's County and specifically JBA. Unconfined groundwater units consist of sediments that are in direct contact with atmospheric pressure, whereas confined aquifers are overlain by an impervious or semiimpervious layer of geologic material. Confined aquifers are, therefore, under increased hydrostatic pressure. Precipitation evaporates, infiltrates, or runs off after contact with the ground. A percentage of water from precipitation recharges the hydrostratigraphic units. Hydrostratigraphic units consist of gravel, sand, silt, and clay, or combinations thereof, which behave in a similar and synergistic way to either transmit or retard the movement of groundwater both vertically and horizontally. Groundwater moves through the pore spaces of these hydrostratigraphic units until removal through springs and seeps (next to surface water bodies) or by wells or plant roots (Earth Tech, 2001).

An unconfined groundwater table is present within the surficial Upland Deposits underlying JBA that is derived primarily from precipitation recharge in the vicinity of JBA. The movement of the unconfined groundwater tends to be towards local surface waters. Below the Upland Deposits are the Calvert, Nanjemoy, and Marlboro confining formations followed by the water-bearing Aquia formation. The confining formations separate the Upland Deposits groundwater table from the deeper Aquia formation aquifer.

JBA and most of Prince George's County obtains its potable water supplies from the Washington Suburban Sanitary Commission (WSSC) water utility. The source of the potable water supply is surface water from the Potomac and Patuxent Rivers. No drinking water supply wells are located on JBA and drinking water supply wells are not permitted on JBA.

2.2.2 Site Hydrogeology

Hydrogeology at SWMU 56 has not been specifically investigated; however, groundwater at ST-14 has been measured approximately 15 to 20 feet bgs. The downward migration of groundwater is limited by the Calvert Formation at a depth of approximately 38 to 40 feet bgs.

Groundwater at ST-14 has historically been reported flowing toward the east and northeast; however, comparison of groundwater elevation contours from various monitoring events shows inconsistencies, especially south of North Carolina Avenue, where flow directions have also been reported toward the east and southeast. Hydraulic conductivity has been estimated to range between 0.24 and 3.4 feet per day (IT, 2000). Corresponding groundwater velocities are estimated to be 5.8 to 85 feet per year based on a porosity of 0.3 and a hydraulic gradient of 0.02 feet per foot from the flight line to Cabin Branch (IT, 2000).

Based on the Basewide CSM, SWMU 56 is located on a localized groundwater divide and, therefore, contributes groundwater to two drainage areas, the Cabin Branch and the Charles Branch (AMEC, 2011). Groundwater from the northern portion of the site flows northeast, to the Cabin Branch, approximately 1,300 feet from SWMU 56. Groundwater from the southern portion of the site flows east to the Charles Branch, approximately 1,000 feet from SWMU 56.

As stated previously, drinking water supply wells are not permitted on JBA and SWMU 56 is located approximately 1,400 feet from the east installation boundary line (the closest boundary). Therefore, there are no drinking water supply wells within a minimum of 1,400 feet to the site.

2.3 Surface Water Hydrology

2.3.1 Regional Surface Water Hydrology

JBA is situated on a drainage divide between the Potomac River Basin to the west and the Patuxent River Basin to the east. Surface water originating in the north, west, and south portions of the Base is discharged to the Potomac River via Henson Creek, the Meetinghouse and Paynes Branches of Tinker Creek, and Piscataway Creek. Surface water originating in the eastern portion of the Base flows to the Patuxent River via Cabin Branch and Charles Branch of Western Branch (CH2M Hill, 2005).

The Potomac River and its tributaries identified above are listed in the Code of Maryland Regulations (COMAR) Stream Use Classification Index as Use-IP (Water Contact Recreation and Protection of Aquatic Life). The Patuxent River and its tributaries are also listed in the COMAR Stream Use Classification Index as Use-IP (EA, 2012).

2.3.2 Site Surface Water Hydrology

SWMU 56 is located on the eastern side of the surface water drainage divide. Based on the existing site topography and adjacent stormwater system, surface water from the Civil Engineering Storage Yard AOI drains east to the southern Charles Branch, which is located approximately 510 feet southeast of the site and is the closest surface water body. The Charles Branch ultimately drains into the Patuxent River. Surface water from the Building 3459 AOI drains north to N Carolina Avenue and then west via the storm sewer. Between the runways, it is conveyed south via an open channel to the Piscataway Creek and ultimately to the Potomac River.

There are no surface water bodies or creeks within or in the immediate proximity to SWMU 56.

2.4 Demography and Land Use

2.4.1 Basewide Demography and Land Use

Residential housing, consisting of occupied and unoccupied housing, is the second largest land use area on Base. More than 8,000 full-time military personnel are stationed at JBA, which also employs more than 2,000 civilians. On-Base housing consists of single-family, duplex-type developments, and high-density apartments. The majority of housing is located on the west side of the Base. One residential area is located east of the airfield. Outdoor recreation land use includes golf courses, ball fields, a tennis court, a running track, and picnic areas and the majority are located on the west side of the Base.

Land use adjacent to JBA includes light industrial, commercial, residential, and undeveloped. On the north side of the Base, there is a business park and light industrial area. Most of the area northeast of the Base is currently undeveloped. The area just south of the Base is primarily residential and undeveloped land. Some of the land south of the residential area is used for commercial purposes. Land use on the west side of the base consists of residential, commercial (shopping centers and office), light industrial, and few areas of undeveloped land. On the east side of the Base, land use includes light industrial/business park and residential.

2.4.2 Site Demography and Land Use

SWMU 56 is currently zoned as Industrial and used as a storage yard for JBA's Civil Engineering Department. The future planned land use for the site is industrial and administrative.

2.5 Habitats and Biology

In 2005, a Basewide Ecological Risk Assessment (BERA) was completed to provide a basic conceptual model for the evaluation of potential ecological risks on JBA (CH2M Hill, 2005). The following Basewide and Site-Specific Habitat and Biology are summarized from the BERA.

2.5.1 Basewide Habitats and Biology

2.5.1.1 Wetland and Aquatic Habitats

Wetland and aquatic habitats occur infrequently on JBA. Wetlands, which comprise only about two percent of the JBA land area, are mainly associated with the borders of stream channels. The headwaters of five streams are located on-Base, including Piscataway Creek, Henson Creek, Tinkers Creek (Paynes and Meetinghouse Branches), Cabin Branch (North and South Branches), and Charles Branch. There are five small ponds and one larger surface water body (Base Lake) that encompass a total area of approximately 20 acres (CH2M Hill, 2005).

2.5.1.2 Terrestrial Habitats

JBA is located in the Oak-Pine Forest Region, originally characterized by oaks and hickories, with pines prevalent on sites with poorer soils. Vegetative communities at JBA currently consist of extensively managed areas and unmanaged patches of natural plant communities. Approximately 85 percent of JBA is either developed (e.g., housing, buildings, roads, and runways) or intensely managed. The intensely managed areas include lawns, golf course fairways and greens, and recreational fields, as well as the runway borders, the infield, and approach clear zones. Unimproved areas contain ecological communities such as mixed hardwood forests, mixed hardwood/pine forests, oak forests, oak/hickory forests, oak/pine forests, pine forests, red maple swamp, and shallow emergent marsh.

2.5.1.3 Biota

Various species of birds, mammals, reptiles, amphibians, and aquatic organisms have been observed at JBA and reported in historical documents. The following summarizes the number of species that have been identified in each category:

Species Category	No. of Species on-Base
Birds	68
Mammals	11
Reptiles	1
Amphibians	3
Fish:	
- Base Lake and Golf Course Ponds	13
- Berry Pond	1
- Piscataway Creek	27
- Paynes Branch	8
- Meetinghouse Branch	7
- Cabin Branch	0
- Henson Creek	Habitat Limited, Not Surveyed
- Charles Branch	Habitat Limited, Not Surveyed

There is one Federally-listed endangered plant, the sandplain gerardia (Agalinis acuta), on JBA, according to a 1997 Basewide survey. In addition, there is one Federally-listed threatened species, the bald eagle (Haliaeetus leucocephalus), that has been observed at Base Lake during winter bird surveys. No bald eagle nests have been found on JBA to date, and it has been reported the eagles were likely transients from Chesapeake Bay. No additional state or federally listed threatened or endangered species have been identified on JBA (Geo-Marine 2001).

2.5.2 Site Habitat and Biology

2.5.2.1 Wetland and Aquatic Habitat

There are no wetlands or aquatic habitats located at SWMU 56; however, as stated in **Sections 2.2.2** and **2.3.2**, the Civil Engineering Storage Yard AOI contributes both surface water and groundwater to Charles Branch, while Building 3459 AOI contributes surface water to Piscataway Creek and groundwater to Cabin Branch. The following provides a brief summary of the 2005 BERA for the drainage areas that SWMU 56 contributes both groundwater and surface water to:

- Charles Branch has a relatively poor habitat quality for aquatic biota. Based upon the available lines of evidence in the 2005 BERA, potential risks to ecological receptors in this stream were considered to be low and acceptable; no further action was recommended;
- Cabin Branch is relatively small and has been altered dramatically by hydrology and runoff, producing headcuts and erosional areas, resulting in an overall poor habitat quality for aquatic biota. Based upon the available lines of evidence presented in the 2005 BERA, potential risks to ecological receptors in the southern tributary of the Cabin Branch were considered to be relatively low and potentially attributable to pesticides and PAHs in sediment; however, the limited available habitat was stated to significantly reduce potential exposures; and
- Piscataway Creek is characterized by a large, relatively stable channel with pools and long gravel riffles. Banks are generally well vegetated, with trees and shrubs in a narrow riparian zone surrounding the creek. Overall, Piscataway Creek provides good to fair habitat for aquatic biota. Based upon the available lines of evidence presented in the 2005 BERA, potential risks to ecological receptors in surface waters within the Piscataway Creek Drainage Area were considered low and acceptable; no further action was recommended for these water bodies (CH2M Hill, 2005).

2.5.2.2 Terrestrial Habitats

The Civil Engineering Storage Yard AOI consists of a flat, paved, storage area surrounded by maintenance and storage buildings. The Building 3459 AOI consists of a limited area of maintained grass and is surrounded by paved areas. Both areas are detailed on **Figure 1-2**. The limited area of mowed grass and lack of fields and forested habitats at the Civil Engineering Storage Yard AOI and the Building 3459 AOI results in an overall poor habitat quality for terrestrial receptors.

2.5.2.3 Biota

Biota has not been specifically investigated at SWMU 56; however, SWMU 56 was included in the Cabin Branch Drainage Area in the 2005 BERA. In addition, because SWMU 56 contributes surface water and groundwater to Charles Branch, Cabin Branch, and Piscataway Creek, **Sections 2.5.2.3.1** through **2.5.2.3.4** below detail the aquatic and terrestrial receptor species identified in the 2005 BERA.

2.5.2.3.1 Charles Branch Biota

Biota were not sampled in Charles Branch; however, the following semi-aquatic upper trophic level receptors were chosen for the BERA exposure modeling in the Charles Branch drainage:

- Great blue heron (Ardea herodias) semi-aquatic avian piscivore;
- Mallard (Anas platyrhynchos) semi-aquatic avian omnivore;
- Muskrat (Ondatra zibethicus) semi-aquatic mammalian herbivore;
- Raccoon (Procyon lotor) semi-aquatic mammalian omnivore; and
- Spotted sandpiper (Actitus macularia) semi-aquatic avian invertivore.

2.5.2.3.2 Cabin Branch Biota

The following semi-aquatic upper trophic level receptors were chosen for the BERA exposure modeling in the Cabin Branch drainage:

- Great blue heron (Ardea herodias) semi-aquatic avian piscivore;
- Raccoon (Procyon lotor) semi-aquatic mammalian omnivore; and
- Spotted sandpiper (Actitus macularia) semi-aquatic avian invertivore.

2.5.2.3.3 Piscataway Creek Biota

The following semi-aquatic upper trophic level receptors were chosen for the BERA exposure modeling in the Piscataway Creek drainage:

- Belted kingfisher (Ceryle alcyon) semi-aquatic avian invertivore/piscivore;
- Great blue heron (Ardea herodias) semi-aquatic avian piscivore;
- Mallard (Anas platyrhynchos) semi-aquatic avian omnivore;
- Muskrat (Ondatra zibethicus) semi-aquatic mammalian herbivore;
- Raccoon (Procyon lotor) semi-aquatic mammalian omnivore; and
- Spotted sandpiper (Actitus macularia) semi-aquatic avian invertivore.

2.5.2.3.4 Terrestrial Biota

The following terrestrial upper trophic level receptors were chosen for the BERA exposure modeling in mowed grass/field habitats:

- American kestrel (Falco sparverius) terrestrial avian insectivore/carnivore;
- American robin (Turdus migratorius) terrestrial avian invertivore/omnivore;
- Killdeer (Charadrius vociferous) terrestrial avian invertivore;
- Meadow vole (Microtus pennsylvanicus) terrestrial mammalian herbivore;
- Mourning dove (Zenaida macroura) terrestrial avian herbivore;
- Red fox (Vulpes vulpes) terrestrial mammalian carnivore;
- Short-tailed shrew (Blarina brevicauda) terrestrial mammalian invertivore; and
- White-footed mouse (Peromyscus leucopus) terrestrial mammalian omnivore.

The following terrestrial upper trophic level receptors were chosen for the BERA exposure modeling in forested habitats:

- American robin (Turdus migratorius) terrestrial avian invertivore/omnivore;
- Gray fox (Urocyon cinereoargenteus) terrestrial mammalian carnivore;
- Red-tailed hawk (Buteo jamaicensis) terrestrial avian carnivore;
- Short-tailed shrew (Blarina brevicauda) terrestrial mammalian invertivore;
- White-footed mouse (Peromyscus leucopus) terrestrial mammalian omnivore; and
- White-tailed deer (Odocoileus virginianus) terrestrial mammalian herbivore.

2.6 Meteorology and Climate

JBA has a continental type of climate with well-defined seasons in a transition zone between a humid continental climate zone to the north and west and a humid subtropical climate zone to the south. Both of these zones, in addition to the nearby water bodies, influence the climate at JBA. JBA is on the upper end of a peninsula formed by the Potomac River on the west and south and the Chesapeake Bay on the east. Further to the east, across the Delmarva Peninsula, is the Atlantic Ocean.

Based on data collected at the Upper Marlboro National Climatic Data Center Station located approximately 5 miles to the northeast of the Base, the mean annual temperature for JBA is 54

degrees Fahrenheit (°F), with the warmest month being July (monthly average temperature of 76°F) and the coldest month being January (monthly average temperature of 32°F). The annual precipitation at JBA averages about 42 inches of rain, and the monthly distribution of precipitation is fairly uniform during the year (URS, 2006).

3.0 PHASE I REMEDIAL INVESTIGATION PROCEDURES

3.1 Aerial Image Review

Prior to the initiation of field activities at SWMU 56, a review of aerial imagery from 1943 to 2010 was conducted to determine the location of miscellaneous material storage. Information obtained during the imagery review was used to select the locations of each temporary monitoring well (TMW) at the Civil Engineering Storage Yard AOI and of shallow soil borings (SB) at the Building 3459 AOI. The aerial images reviewed during this Phase I RI are included in **Appendix B**. The results of the aerial imagery review are presented in **Section 4.1**.

3.2 Site Permits and Utility Locate

Prior to conducting the field investigation, subsurface utilities were located at each direct push TMW and SB location. On-site utility clearances were obtained by completing Air Force Form 103 – Work Clearance Request and by submitting a Maryland 811 Miss Utility locate request. All TMW and SB locations were cleared by Air Force personnel and a private utility locator. No TMW or SB locations were moved based on subsurface utilities; however, TMW-02 was adjusted based on proximity to on-site storage buildings. Final TMW and SB locations are shown on **Figure 3-1**.

3.3 ST14-MW35 pH Purge Test

On 7 December 2012, a purge test was conducted on ST14-MW35 to assess the source of high pH detected in ST14-MW35 during previous groundwater sampling events. The purge test included documenting the pH of groundwater purged from the well over time at varying purge rates. Groundwater was purged from ST14-MW35 through Teflon-lined tubing using a peristaltic pump at flow rates ranging from 150 milliliters per minute (mL/min) to 500 mL/min for approximately five hours. During the purging test, turbidity and pH was monitored at 5-minute intervals and the groundwater level was measured to monitor drawdown. The depth of the tubing intake was adjusted over time as the drawdown increased. Results of the ST14-MW35 purge test are presented in **Section 4.3**.

3.4 Environmental Sampling

On 3-7 December 2012, environmental sampling at SWMU 56 was conducted in accordance with the Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) for the Phase I RI at SWMU 56 developed by Bay West and approved by the project stakeholders. Environmental sample collection consisted of soil and groundwater samples at the Civil Engineering Storage Yard AOI and shallow soil samples at the Building 3459 AOI. The following sections describe the procedures used to collect environmental samples:

3.4.1 Civil Engineering Storage Yard Area of Interest

3.4.1.1 Soil Sampling

A total of nine TMWs within the Civil Engineering Storage (**Figure 3-1**) were advanced with a Direct Push Technology (DPT) Geoprobe[™] 6820 drill rig to a depth of approximately 30 feet bgs, with the exception of TMW-08, which was advanced to a depth of 32 feet bgs. Borehole drilling was conducted by a State of Maryland-Licensed driller.

Soil was collected from each TMW using 4-foot Macro-Core samplers. Soil cores were logged, documented, and headspace screened for organic vapors using a photoionization detector (PID). Soil descriptions were logged in accordance with the Unified Soil Classification System

(USCS) and recorded on the TMW boring logs (**Appendix C**). Observations recorded on the logs include descriptions of soil type, grain size distribution, changes in lithology, soil stains, olfactory observations (mild to strong), soil moisture, depth intervals of laboratory samples, sample recovery, total depth of boring, pH screening results, and PID screening results. Soil pH screening was conducted using a Hanna HI 99121 direct soil pH measurement kit. Headspace screening technique was conducted in accordance with the UFP-QAPP.

Soil was collected for physical classification and headspace analysis continuously from the ground surface to the terminus depth of each TMW and logged by a field geologist as described above. Soil samples were collected for laboratory analysis in accordance with the UFP-QAPP. Soil collected for VOC analysis was collected directly from the Macro-Core sampler and placed in laboratory containers (40 milliliter [mL] vials) as soon as possible after the sampler was opened. Soil was field screened for VOCs using a handheld PID at 2-foot intervals. One or two samples were selected from each TMW for fixed-base laboratory analysis based on the following criteria:

- Interval corresponding to the highest pH, PID result, or olfactory/visual indication of contamination; and
- Interval directly above the soil/groundwater interface.

A total of 14 soil samples and one field duplicate were collected, labeled, sealed under chain-ofcustody, and shipped to TestAmerica Laboratories, Inc., (TestAmerica) in Denver, Colorado and analyzed using the methods described in **Section 3.5**. The Civil Engineering Storage Yard AOI soil analytical results are presented in **Section 4.3.1**.

3.4.1.2 Groundwater Sampling

Groundwater samples were collected from the Civil Engineering Storage Yard AOI to investigate the presence of contamination, if any, and to investigate the source of unusually high pH observed in ST14-MW35. Groundwater samples were collected from TMWs at the locations designated on **Figure 3-1**. As described in **Section 3.4.1.1**, the TMWs were advanced using a Geoprobe® DPT stainless-steel retractable screen sampler.

After the DPT groundwater sampler was installed and the screen was retracted, groundwater was purged at a rate of 300 to 500 mL/min from the TMW to remove sediment using a variable speed peristaltic pump and Teflon-lined tubing in accordance with the UFP-QAPP. Turbidity and pH were measured during purging using a flow-through cell water quality meter. The groundwater sampling goal for turbidity was 10 nephelometric turbidity units (NTUs) prior to sampling; however, this goal was not always obtainable due to site conditions. Deviations from this goal were documented in the field logbook and are discussed in **Section 4.3.2**.

Once the TMW was purged, low-flow purging (approximately 150 ml/min) and sampling techniques were used during the collection of groundwater samples for laboratory analysis to further minimize turbidity in the samples. A final turbidity reading was recorded prior to collecting groundwater samples. If groundwater reached the turbidity goal of 10 NTUs during high flow purging (300 mL/min to 500 mL/min), the flow rate was not adjusted prior to sample collection. Photographs of initial and final purge water and groundwater sample collection forms containing sample collection information and field parameters are included in **Appendix C**. A total of nine groundwater samples and one field duplicate were collected, labeled, sealed under chain-of-custody, and shipped to TestAmerica. Groundwater sample analytical results are presented in **Section 4.3.2**.

3.4.2 Building 3459 Area of Interest

3.4.2.1 Soil Sampling

SBs within the Building 3459 AOI were advanced with a DPT Geoprobe[™] 6820 drill rig to a depth of 2 feet bgs. Soil samples were collected using a 4-foot Macro-Core sampler, logged and field screened, as described in **Section 3.4.1.1**, except the soils were not screened for pH. The soil samples were collected for laboratory analysis from a depth of 1 to 2 feet bgs, the assumed bottom of the building foundation. Four soil samples were collected, labeled, sealed under chain-of-custody, and shipped to TestAmerica and analyzed using the laboratory methods described in **Section 3.5**. The Building 3459 AOI soil analytical results are presented in **Section 4.3.1**.

3.4.2.2 Groundwater Sampling

Groundwater at Building 3459 AOI was not investigated because based on the known building operational history discussed in **Section 1.4**, possible herbicide and pesticide contamination would be limited to surface soils.

3.5 Sample Analytical Methods

Soil and groundwater samples were analyzed by TestAmerica. Samples collected from the Civil Engineering Storage Yard AOI were analyzed for:

- TCL VOCs plus tentatively identified compounds (TICs) by SW-846 Method 8260B;
- TCL PAHs by SW-846 Method 8270-SIM;
- TCL SVOCs plus TICs by SW-846 Method 8270D;
- DRO/GRO by SW-846 Method 8015C;
- TCL pesticides by SW-846 Method 8081B;
- PCBs by SW-846 Method 8082A;
- TCL herbicides by SW-846 Method 8151A; and
- TAL metals by SW-846 Methods 6010B, 7470A, and 7471B.

The Building 3459 AOI samples were analyzed for:

- TCL pesticides by SW-846 Method 8081B; and
- TCL herbicides by SW-846 Method 8151A.

Quality control (QC) samples were analyzed for the same parameters and are discussed in **Section 3.6**.

3.6 Sample Quality Assurance/Quality Control Measures

QC samples were collected as part of the soil and groundwater investigation including matrix spike/matrix spike duplicates (MS/MSD), field duplicates, equipment rinsate blanks, trip blanks, temperature blanks, and field blanks.

3.6.1 Field Quality Assurance/Quality Control

Field QC samples included field duplicates, MS/MSDs, equipment rinsate blanks, trip blanks (VOCs only), temperature blanks, and field blanks. Field duplicates were collected at the required frequency of 10 percent per method and matrix. Equipment rinsate blanks were collected at the required frequency of 5 percent per method and matrix, only when non-disposable sampling equipment was used. Field blanks were collected at the required frequency

of one per source of water (e.g. decontamination rinse water). One trip blank was included in each cooler with VOC samples and temperature blanks were included in all sample coolers.

QC procedures for pH, specific conductance, temperature, and turbidity measurements during groundwater sampling and PID screening during soil sampling included calibrating the instruments, as specified in the UFP-QAPP, and checking the reproducibility of the measurements by taking multiple readings on a single sample or reference standard.

3.6.2 Laboratory Quality Assurance/Quality Control

MS/MSDs were analyzed at a frequency of 5 percent per method and matrix. A triple volume of groundwater samples was collected to ensure adequate sample for MS/MSD analysis. In addition, the laboratory analyzed method blanks and laboratory control samples (LCSs) at a frequency of 5 percent per method and matrix. If a MS/MSD was not included in an analytical batch, a laboratory control sample duplicate (LCSD) was analyzed in order to measure precision. Surrogates were also spiked into all organic field and QC samples.

3.6.3 Data Validation and Verification

Bay West used Laboratory Data Consultants, Inc. Automated Data Review (ADR) software to perform an automated data review equivalent to an USEPA Tier II evaluation and to provide preliminary discrete data qualification. During the full data validation, data were evaluated for precision, accuracy, representativeness, completeness, comparability, and sensitivity. Data qualifiers were appended to each result, as necessary, in the electronic data deliverables with validation criteria set at 100% of USEPA Tier III Validation in accordance with the DoD Quality Systems Manual (QSM) for Environmental Laboratories, v4.2 (DoD, 2010), the USEPA's National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008) and the USEPA's National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010). Data validation reports and laboratory analytical reports are included in **Appendix D** and **Appendix E**, respectively.

3.6.4 Decontamination Procedures

All drilling and sampling equipment utilized during the SWMU 56 Phase I RI field investigation was decontaminated in accordance with the UFP-QAPP. Prior to drilling activities, an equipment decontaminated prior to its initial use and all subsequent sampling. Drilling equipment, including the Geoprobe® DPT retractable screen sampler, was steam cleaned. Sampling equipment decontamination procedures included scrubbing with potable water and a non-phosphate detergent and subsequent rinsing with potable water and deionized water. Groundwater sampling equipment decontamination was performed in accordance with the UFP-QAPP.

3.7 Investigation Derived Waste

Investigation derived waste (IDW) was generated during the DPT SB and decontamination process, as well as during the TMW development and purging while soil and groundwater sampling at SWMU 56.

IDW was managed to avoid additional degradation of the environment. IDW was segregated into solids and liquids, containerized, sampled for disposal categorization, and temporarily held at JBA while awaiting appropriate off-site disposal. IDW documentation including waste disposal manifests and load tickets will be signed by Keith Freihofer, Hazardous Materials Program Manager and included in **Appendix C** of the Draft Final Phase I RI Report.

4.0 PHASE I REMEDIAL INVESTIGATION RESULTS

4.1 Aerial Image Review

As discussed in **Section 3.1**, during the preparation of the UFP-QAPP, Bay West conducted a thorough review of aerial images from 1943 to 2010 to define the Civil Engineering Storage Yard AOI boundaries. Bay West identified areas of historical storage based on the selected historical aerial images. The aerial images used during the UFP-QAPP are included in **Appendix B**. It should be noted that some of the provided aerial images were not georeferenced to the current site conditions. The following items were noted during the historical aerial review:

- **1943** No evidence of storage within the Civil Engineering Storage Yard AOI. All access ways and driveways appear to be gravel. Portions of Building 3459 are constructed.
- **1948** No evidence of storage within the Civil Engineering Storage Yard AOI. All access ways and driveways appear to be gravel. Buildings 3459 and 3448 are constructed.
- **1950** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be gravel. Buildings 3444 and 3457 are constructed.
- **1955** Storage area within the Civil Engineering Storage Yard AOI. All access ways and driveways appear to be gravel. Portions of Buildings 3449 and 3447 are constructed.
- **1964** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved. Portions of Buildings 3449 and 3447 are constructed.
- **1968** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved and striped.
- **1971** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved and striped.
- **1974** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved and striped.
- **1982** Minimal exterior storage is visible on the aerial image. All access ways and driveways appear to be paved and striped. Portions of Buildings 3440 and 3451 are constructed.
- **2000** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved and striped. Buildings 3441 and 3442 are constructed. Building 3459 has been demolished.
- **2003** Minimal exterior storage is visible on the aerial image. All access ways and driveways appear to be paved and striped.
- **2005** Storage within the Civil Engineering Storage Yard AOI is evident. All access ways and driveways appear to be paved and striped.
- **2007** Storage within the Civil Engineering Storage Yard AOI is evident on the east side of the area. All access ways and driveways appear to be paved and striped.

4.2 ST14-MW35 pH Purge Test

A purge test was conducted on ST14-MW35 to monitor the pH of groundwater purged from the well over time using the procedures discussed in **Section 3.3**. A total of 91.5 liters of groundwater were purged from the well. During the first 1.5 hours of purging at 150 mL/min, pH measurements ranged from 9.34 to 10.28. The purge rate was then increased to 500 mL/min and, after approximately two hours, pH decreased to 6.59. Groundwater was then purged at a rate of 400 mL/min for 20 minutes, then 200 mL/min for 25 minutes, at which point the pH stabilized at 6.92 for approximately 25 minutes. The groundwater level in ST14-MW35 continually dropped during the purge test; the static water level started at 17.70 feet below top of casing (BTOC) and leveled off at approximately 27.95 feet BTOC with a purge rate of 200 mL/min. The pH purge test results are included in **Table 4-1** and **Figure 4-1**.

4.3 Environmental Sampling

Environmental sampling was conducted in accordance with the UFP-QAPP as described in **Section 3.4**. The following sections present the results of soil and groundwater sampling as well as a comparison of the analytical results to the USEPA residential RSLs, USEPA MCLs, or MDE Interim Final Cleanup Standards, as appropriate. Groundwater chemical concentrations were compared to USEPA RSLs, USEPA MCLs, and MDE interim final cleanup standards (MDE, 2008), as appropriate. The sampling results were also compared to the Basewide background upper tolerance limits (UTLs) for surface soil (0 to 2 feet bgs), SBs (greater than 2 feet bgs), and groundwater, when available. The comparison to Basewide background UTLs was completed for informational purposes only; no chemicals were screened away based on the Basewide background UTLs comparison.

4.3.1 Civil Engineering Storage Yard Area of Interest

4.3.1.1 Soil Sampling

Nine TMWs were advanced in the Civil Engineering Storage Yard AOI to a depth of approximately 30 feet bgs. Each TMW was completed through asphalt. Soil samples were collected continuously from the ground surface to the bottom of each TMW. Soil encountered in the TMWs generally consisted of 5 feet of brown to dark gray clay with sand and gravel (fill material), underlain by grayish brown clay, silt, and fine sand to 10 feet bgs (shallow upland deposits), underlain by yellowish brown to brownish yellow, medium to coarse sands with varying amounts of gravel and clay to approximately 20 feet bgs (intermediate upland deposits), underlain by yellow fine sand with silt to the extent of the TMW (deep upland deposits). The Calvert Formation was encountered in TMW-02 and TMW-08 at a depth of 30 feet bgs and consisted of dark greenish gray clay. Groundwater was typically encountered at 14 to 16 feet bgs. A cross-section of the lithology observed at the site is presented on **Figure 4-2** (A-A' cross-section plan view is included on **Figure 3-1**). TMW logs including full lithology descriptions are included in **Appendix C**.

No physical indications of contamination (staining, odor, sheen, etc.) were observed during field screening in the TMWs, with the exception of a 1-inch black clay layer in TMW-02 at 3 feet bgs that was possibly stained. TMW-02 also exhibited the highest pH measurement of 8.39 at 2 to 4 feet bgs; therefore, the 2- to 4-foot interval was submitted for laboratory analysis. At TMW-01, TMW-03, TMW-05, and TMW-06, the intervals with the highest PID readings above groundwater were sampled and submitted for laboratory analysis. Soil samples collected from SBs TMW-04, TMW-07, TMW-08, and TMW-09 exhibited no field screening or headspace reading indication of contamination; therefore, samples were collected from TMW-01. A summary of Civil Engineering Yard AOI soil screening results and sample collection is presented in

Table 4-2. The soil detections are presented in **Table 4-3** and sample locations are shown on **Figure 3-1**. The following sections provide a summary of the soil sampling analytical results.

4.3.1.1.1 VOCs

VOCs were detected in five soil samples. The following summarizes the VOC detections, number of detections, and detection ranges:

- 1,3,5-trimethylbenzene one detection at 0.61 µg/kg;
- 2-butanone (MEK) three detections ranging from 7.8 to 20 μg/kg;
- Acetone four detections ranging from 9.6 to 97 μg/kg;
- Carbon disulfide three detections ranging from 0.44 to 0.87 μg/kg;
- cis-1,2-dichloroethene two detections ranging from 50 to 120 μ g/kg;
- Naphthalene one detection at 1.3 µg/kg;
- Tetrachloroethene one detection at 1.8 µg/kg;
- Toluene one detection at 1.2 μg/kg;
- trans-1,2-dichloroethene two detections ranging from 4.4 to 9.6 μg/kg; and
- Trichloroethene two detections ranging from 0.49 to 34 μ g/kg.

None of the above concentrations exceeded their respective USEPA residential RSLs (USEPA, 2012).

4.3.1.1.2 PAHs

PAHs were detected in four soil samples. The following summarizes the PAH detections, number of detections, and detection ranges:

- Acenaphthene one detection at 2.2 µg/kg;
- Acenaphthylene three detections ranging from 1.0 to 7.7 μg/kg;
- Anthracene two detections ranging from 3.7 to 5.6 µg/kg;
- Benzo[a]anthracene three detections ranging from 1.9 to 14 μg/kg;
- Benzo[a]pyrene three detections ranging from 2.2 to 18 µg/kg;
- Benzo[b]fluoranthene three detections ranging from 5.3 to 34 μg/kg;
- Benzo[g,h,i]perylene three detections ranging from 4.0 to 18 µg/kg;
- Benzo[k]fluoranthene three detections ranging from 1.5 to 9.4 µg/kg;
- Chrysene three detections ranging from 3.7 to 30 µg/kg;
- Dibenz(a,h)anthracene two detections ranging from 3.4 to 3.9 µg/kg;
- Fluoranthene three detections ranging from 3.5 to 35 µg/kg;
- Fluorene two detections ranging from 4.0 to 5.4 µg/kg;
- Indeno[1,2,3-cd]pyrene three detections ranging from 3.1 to 17 μg/kg;
- Naphthalene four detections ranging from 0.66 to 37 µg/kg;
- Phenanthrene three detections ranging from 2.1 to 28 µg/kg; and
- Pyrene three detections ranging from 4.0 to 42 μ g/kg.

Benzo[a]pyrene was detected in two samples at concentrations of 16 and 18 μ g/kg at TMW-02 and TMW-01, respectively, that exceeded the USEPA residential RSL of 15 μ g/kg.

4.3.1.1.3 SVOCs

SVOCs were detected in six soil samples and the field duplicate. The following summarizes the SVOC detections, number of detections, and detection ranges:

- Benzyl alcohol six detections ranging from 22 to 42 μg/kg;
- Benzo[b]fluoranthene one detection at 44 µg/kg;
- Chrysene one detection at 38 µg/kg; and
- Pyrene two detections: 20 and 47 µg/kg.

None of the above concentrations exceeded their respective USEPA residential RSLs (USEPA, 2012).

4.3.1.1.4 DRO/GRO

DRO was detected in all 14 soil samples and the duplicate ranging from 810 μ g/kg (in duplicate) to 9,500 μ g/kg. GRO was detected in nine soil samples and the duplicate ranging from 260 μ g/kg (in duplicate) to 4,900 μ g/kg. None of the DRO and GRO concentrations exceeded the MDE interim final cleanup standards for DRO and GRO of 230,000 μ g/kg (MDE 2008).

4.3.1.1.5 Pesticides

Pesticides were detected in two soil samples. The following summarizes the pesticide detections, number of detections, and detection ranges:

- 4,4'-dichlorodiphenyldichloroethane (DDD) two detections ranging from 1.7 to 1.8 µg/kg; and
- 4,4'-dichlorodiphenyldichloroethylene (DDE) two detections ranging from 1.2 to 4.7 µg/kg.

None of the above concentrations exceeded their respective USEPA residential RSLs (USEPA, 2012).

4.3.1.1.6 PCBs

No PCBs were detected greater than the limit of detection (LOD) in the soil samples.

4.3.1.1.7 Herbicides

No herbicides were detected greater than the LOD in the soil samples.

4.3.1.1.8 Metals

Metals were detected in all of the soil samples and the field duplicate. The following summarizes the metal detections, number of detections, and detection ranges:

- Aluminum 15 detections ranging from 1,600,000 to 24,000,000 μg/kg;
- Arsenic 15 detections ranging from 370 to 2,900 μg/kg;
- Barium 15 detections ranging from 580 to 42,000,000 μg/kg;
- Beryllium 15 detections ranging from 25 to 310 µg/kg;
- Cadmium 15 detections ranging from 29 to 180 μg/kg;
- Calcium 15 detections ranging from 20 to 1,100 μg/kg;
- Chromium 15 detections ranging from 2,400 to 22,000 μg/kg;
- Cobalt 15 detections ranging from 100 to 2,700 μg/kg;
- Copper 15 detections ranging from 1,000 to 5,200 µg/kg;

- Iron 15 detections ranging from 1,400,000 to 21,000,000 μg/kg;
- Lead 15 detections ranging from 890 to 16,000 μg/kg;
- Magnesium 15 detections ranging from 33,000 to 800,000 μg/kg;
- Manganese 15 detections ranging from 940 to 39,000 µg/kg;
- Mercury four detections ranging from 11 to 24 µg/kg;
- Molybdenum 15 detections ranging from 81 to 1,000 μg/kg;
- Nickel 15 detections ranging from 320 to 5,400 µg/kg;
- Potassium 15 detections ranging from 68,000 to 440,000 μg/kg;
- Selenium 15 detections ranging from 170 to 850 μg/kg;
- Silver seven detections ranging from 21 [in duplicate]to 45 µg/kg;
- Sodium four detections ranging from 75,000 to 600,000 μg/kg;
- Thallium 15 detections ranging from 11 to 210 µg/kg;
- Vanadium 15 detections ranging from 2,600 to 37,000 μ g/kg; and
- Zinc 15 detections ranging from 580 to 20,000 μ g/kg.

The detections of arsenic and barium exceeded the USEPA residential RSLs. Arsenic exceeded the USEPA residential RSL of 390 μ g/kg in all but one soil sample (the parent sample of the field duplicate pair at TMW01). Barium was detected in one soil sample at TMW-06 at a concentration of 42,000,000 μ g/kg that exceeded the USEPA residential RSL of 15,000,000 μ g/kg. Total chromium was detected in all of the samples at concentrations exceeding the chromium VI USEPA residential RSL of 290 μ g/kg, but did not exceed the chromium III USEPA residential RSL of 120,000,000 μ g/kg.

4.3.1.2 Groundwater Sampling

Groundwater samples were collected from each TMW using the procedures described in **Section 3.3.2**. The groundwater sampling turbidity goal of 10 NTUs, prior to sampling, was attained for each of the groundwater samples, with the exception of TMW-02, TMW-05, and TMW-08, which had final turbidity readings of 1,028.5, 12.6, and 52.2 NTUs, respectively. After purging TMW-05 and TMW-08 for a minimum of 2 hours, turbidity did not reach 10 NTUs; therefore, the peristaltic pump was set to the minimum pumping rate of 150 mL/min and water samples were collected. At TMW-02, the recharge rate was not sufficient to collect more than one turbidity reading. After recording one turbidity reading and purging for 2 hours, the water sample was then collected at the minimum pumping rate of 150 mL/min. The possible effects of turbid groundwater samples are discussed in **Section 8.1.1.2**. Water levels within the TMW casings could not be measured because the diameter of the water level indicator probe was greater than the diameter of the top of the DPT groundwater sampler; however, groundwater was measured at 14.01 feet BTOC in ST14-MW35. The location of ST14-MW35 is detailed on **Figure 3-1**.

Groundwater detections are presented in **Table 4-4**. The following sections provide a summary of the Civil Engineering Storage Yard AOI groundwater results:

4.3.1.2.1 VOCs

VOCs were detected in seven groundwater samples and the field duplicate. The following summarizes the VOC detections, the number of detections, and detection ranges:

- 1,1-Dichloroethane one detection at 0.21 µg/L;
- 1,1-Dichloroethene three detections ranging from 0.17 to 0.53 μg/L;

- Chloroform four detections ranging from 0.33 to 490 µg/L;
- cis-1,2-Dichloroethene six detections ranging from 0.16 to 4.9 μ g/L;
- Trichloroethene six detections ranging from 0.31 to 45 μ g/L; and
- Trichlorofluoromethane one detection at 0.93 µg/L.

Chloroform was detected in four samples at TMW-04, TMW-05, TMW-06, and TMW-07 at concentrations that exceeded the USEPA RSL of 0.19 μ g/L and/or MCL of 80 μ g/L. TCE was detected in five samples and the field duplicate at TMW-01, TMW-02, TMW-05, TMW06, and TMW-09 at concentrations that exceeded the USEPA RSL of 0.44 μ g/L and/or MCL of 5 μ g/L.

4.3.1.2.2 PAHs

PAHs were detected in all of the groundwater samples including the field duplicate. The following summarizes the VOC detections, number of detections, and detection ranges:

- Anthracene one detection at 0.029 μg/L;
- Benzo[b]fluoranthene one detection at 0.17 μg/L;
- Benzo[g,h,i]perylene one detection at 0.15 μg/L;
- Benzo[k]fluoranthene one detection at 0.17 µg/L;
- Dibenz(a,h)anthracene one detection at 0.16 µg/L;
- Fluoranthene one detection at 0.092 μg/L;
- Fluorene two detections ranging from 0.067 to 0.14 μ g/L;
- Indeno[1,2,3-cd]pyrene one detection at 0.17 µg/L;
- Naphthalene 10 detections ranging from 0.0072 to 0.13 μ g/L; and
- Phenanthrene two detections ranging from 0.11 to 0.23 μ g/L.

Benzo[b]fluoranthene, Dibenz(a,h)anthracene, and Indeno[1,2,3-cd]pyrene were detected in TMW-05 at concentrations that exceeded the respective USEPA residential RSLs of 0.029 μ g/L, 0.0029 μ g/L, and 0.029 μ g/L.

4.3.1.2.3 SVOCs

Diethyl phthalate was detected in TMW-06 at a concentration of 0.53 μ g/L. No other SVOCs were detected. The diethyl phthalate detection did not exceed the USEPA residential RSL of 11,000 μ g/L.

4.3.1.2.4 GRO/DRO

GRO was detected at TMW-04 at a concentration of 83 μ g/L. The detection of GRO exceeded the MDE interim residential cleanup standard of 47 μ g/L. DRO was detected at TMW-03 at a concentration of 76 μ g/L. The detection of DRO exceeded the MDE interim residential cleanup standard of 47 μ g/L. GRO/DRO was not detected in the other groundwater samples.

4.3.1.2.5 Pesticides

No pesticides were detected greater than the LOD in the groundwater samples.

4.3.1.2.6 PCBs

No PCBs were detected greater than the LOD in the groundwater samples.

4.3.1.2.7 Herbicides

MCPP was detected at TMW-05 at a concentration of 33 μ g/L and at TMW-07 at a concentration of 35 μ g/L. No other herbicides were detected. The detections of MCPP exceeded the USEPA residential RSL of 12 μ g/L.

4.3.1.2.8 Metals

Metals were detected in all of the groundwater samples including the field duplicate. The following is a list of metal detections, number of detections, and detection ranges:

- Aluminum 10 detections ranging from 57 to 21,000 μg/L;
- Arsenic three detections ranging from 0.41 to 21 µg/L;
- Barium 10 detections ranging from 19 to 210 µg/L;
- Beryllium 10 detections ranging from 0.085 to 1.9 μg/L;
- Cadmium 10 detections ranging from 0.14 to 2.4 µg/L;
- Calcium 10 detections ranging from 1,600 to 11,000 μg/L;
- Chromium (Total) 10 detections ranging from 1.0 to 170 μg/L;
- Cobalt 10 detections ranging from 1.0 to 95 μg/L;
- Copper three detections ranging from 5.2 to 310 µg/L;
- Iron 10 detections ranging from 740 to 110,000 μg/L;
- Lead 10 detections ranging from 0.22 to 24 μg/L;
- Magnesium 10 detections ranging from 750 to 9,100 μg/L;
- Manganese 10 detections ranging from 19 to 390 µg/L
- Mercury five detections ranging from 0.065 to 0.39 μg/L;
- Molybdenum nine detections ranging from 0.19 to 45 μg/L;
- Nickel 10 detections ranging from 3.8 to 150 µg/L;
- Potassium 10 detections ranging from 750 to 4,100 μg/L;
- Selenium two detections ranging from 0.99 to 3.0 µg/L;
- Silver one detection ranging from 0.36 µg/L;
- Sodium 10 detections ranging from 3,700 to 57,000 μg/L;
- Thallium five detections ranging from 0.063 to 1.5 μ g/L;
- Vanadium four detections ranging from 0.77 to 59 μ g/L; and
- Zinc seven detections ranging from 9.0 to 190 μ g/L.

Aluminum, arsenic, chromium (total), cobalt, iron, lead, and thallium were detected at TMW-02 at concentrations that exceeded USEPA residential RSLs or MCLs of 16,000 μ g/L, 10 μ g/L, 100 μ g/L, 4.7 μ g/L, 11,000 μ g/L, 15 μ g/L, and 0.16 μ g/L, respectively. Arsenic was detected at TMW-05 and TMW-08 at concentrations that exceeded the USEPA RSL of 0.045 μ g/L. Cobalt and manganese were detected at TMW-05 at concentrations that exceeded USEPA residential RSLs of 4.7 μ g/L and 320 μ g/L, respectively.

4.3.2 Building 3459 Area of Interest

Four SBs were advanced in the former Building 3456 footprint to a depth of 2 feet bgs. Each SB was located in the on-site grass except for SB-01, which was located on the asphalt surface. Soil encountered in the SBs consisted of yellowish brown silt and sand with gravel. SB logs from Building 3459 AOI are included in **Appendix C**.

No indications of contamination were observed during field screening. PID readings ranged from 0.5 parts per million (ppm) in SB-02 to 1.3 ppm in SB-03. One soil sample was collected from each SB and submitted to TestAmerica for laboratory analysis. Soil detections are presented in **Table 4-5** and sample locations are shown on **Figure 3-1**. The following sections provide a summary of Building 3459 AOI soil analytical results:

4.3.2.1.1 Pesticides

Pesticides were detected in all of the soil samples. The following is a list of pesticides detections, number of detections, and detection ranges:

- Delta hexachlorocyclohexane (delta BHC) two detections ranging from 0.51 to 2.5 µg/kg;
- alpha-Chlordane three detections ranging from 16 to 300 µg/kg;
- gamma-Chlordane three detections ranging from 18 to 420 μg/kg;
- 4,4'-DDD one detection at 65 µg/kg;
- 4,4'-DDE two detections ranging from 2.4 to 27 μg/kg;
- 4,4'-DDT (dichlorodiphenyltrichloroethane) three detections ranging from 0.99 to 41 µg/kg;
- Endosulfan sulfate one detection at 6.7 µg/kg;
- Heptachlor two detections ranging from 0.47 to 14 μ g/kg; and
- Heptachlor epoxide two detections ranging from 0.56 to 2.7 µg/kg.

None of the above concentrations exceeded the USEPA residential RSLs.

4.3.2.1.2 Herbicides

No herbicides were detected greater than the LOD in the soil samples.

4.4 Sample Quality Assurance/Quality Control Measures

All laboratory analytical data were validated by Bay West. Data validation results are discussed in the Data Validation Report included in **Appendix D**. All data were determined to be usable or usable as qualified.

It should be noted that **Table 4-3** through **Table 4-5** includes the detections in the duplicate samples.

Reporting of the first 10 TICs were included in the VOC and SVOC analytical methods as described in the UFP-QAPP. The reported TICs include unknown compounds and common lab contaminants. In addition, one VOC, Acetonitrile, was reported and detected in a soil sample as a TIC; however, the detected concentration of 140 μ g/kg did not exceed the USEPA residential RSL of 870,000 μ g/kg. The full list of TICs can be found in the lab analytical packages included in **Appendix E** and additional TIC evaluation is included in the Data Validation Report included in **Appendix D**.

4.5 Investigation Derived Waste

At the time of this submittal, the IDW sampling results are pending. The Final Phase I RI Report will include the following:

- Hazardous or non-hazardous characterization of the IDW based on waste characterization sampling results;
- The waste facility in which the IDW was transported to; and
- The waste disposal manifests and load tickets signed by Keith Freihofer, Hazardous Materials Program Manager will be included in **Appendix C**.

5.0 FATE AND TRANSPORT

The fate and transport of CECs are dependent on a wide variety of factors. Fate refers to the expected final state that an element, compound, or group of compounds will achieve following release to the environment. Transport refers to the mechanisms and rates of migration of chemicals away from the source area in which human or ecological receptors can then be exposed.

5.1 Fate of Chemicals Exceeding Criteria

Inorganic compounds cannot be degraded or destroyed, but can be attenuated via insoluble or sorbed states. In the case of inorganics, the primary influence on mobility is typically the compound's solubility. Inorganics will be relatively immobile where it is insoluble or sorbed. Conditions favoring solubility will promote mobility via water born migration (surface water and groundwater).

Organic compounds can be degraded to different states depending on the redox conditions present in the soil and groundwater. Organic compounds can be chemically or biologically degraded. Biological degradation can occur by native microbial populations or by microbial populations introduced into the aquifer.

5.2 Potential Transport and Exposure Pathways

The following sections present potential chemical transport and exposure pathways along with general descriptions of each. Site-specific transport and exposure pathways are discussed in **Sections 6.0** and **7.0**.

<u>5.2.1 Soil</u>

Transport Pathways – Soil transport pathways include: fugitive dust from surface soil; transport of surface soil via precipitation and runoff; uptake or ingestion of surface soil by biota; and leaching and infiltration of water from the surface through the soil column to shallow groundwater.

Exposure Pathways – Soil exposure pathways include: dust inhalation of airborne soil particles from fugitive dust and intrusive activities in surface and subsurface soils; incidental ingestion of and dermal contact with inland surface water and sediments from precipitation and runoff; incidental ingestion and dermal contact with surface and subsurface soil; incidental ingestion of biota; and dermal contact, drinking water ingestion, and incidental ingestion of shallow groundwater.

5.2.2 Surface Water and Sediment

Transport Pathways – Surface water and sediment transport pathways include the transport of impacted soil via surface water runoff.

Exposure Pathways – Surface water and sediment exposure pathways include the incidental ingestion of and dermal contact with chemicals sorbed to sediments being transported with the surface water or stormwater.

5.2.3 Groundwater

Transport Pathways – Groundwater transport pathways include the migration of groundwater to surface water seepages.

Exposure Pathways – Groundwater exposure pathways include: incidental ingestion of and dermal contact with inland surface water; incidental ingestion of biota; ingestion of shallow

groundwater as drinking water; and incidental ingestion of and dermal contact with shallow groundwater. It should be noted that drinking water wells are not permitted within JBA; therefore, the ingestion of drinking water is not a complete pathway at SWMU 56.

<u>5.2.4 Air</u>

Transport Pathways – Air transport pathways include the volatilization of chemicals into the air.

Exposure Pathways – Air exposure pathways include inhalation if volatiles are present in the surface soils.

6.0 HUMAN HEALTH SCREENING CRITERIA COMPARISON

6.1 General Approach

As part of the Phase I RI, a human health screening criteria comparison (HHSCC) was performed for the Civil Engineering Storage Yard and Building 3459 AOIs. The primary objective of the HHSCC is to assess potential health impacts to humans under current conditions relative to current and future uses at the sites resulting from site chemicals. SWMU 56 is currently zoned as industrial and used as a storage yard for the JBA Civil Engineering Department. Future land use is designated as industrial and administrative. Based on these uses, potential human receptor groups include military personnel, non-intrusive site workers (personnel working inside buildings at SWMU 56), and intrusive site workers. Additional land use information in provided in **Section 2.4**. It should be noted, however, that the USAF desires to obtain unlimited use/unrestricted exposure (UU/UE) at its contaminated sites; therefore, future residential human receptors are evaluated with this HHSCC as well. To that end, the USEPA residential RSLs and MCLs are used as the human health screening criteria.

In addition, GRO/DRO analytical results are compared to the MDE cleanup standards as no USEPA residential RSL or MCL is listed for comparison (MDE, 2008). A constituent is identified as a potential risk to human health if a concentration exceeds the USEPA residential RSLs, MCLs, or MDE cleanup standards.

6.2 Human Health Criteria Comparison Evaluation

6.2.1 Civil Engineering Storage Yard Area of Interest

6.2.1.1 Soil

A total of 15 soil samples and 1 duplicate were collected from 9 TMWs at the Civil Engineering Storage Yard AOI. Samples were analyzed using methods discussed in **Section 4.3.1.1**. Only benzo[a]pyrene, arsenic, and barium were detected at concentrations that exceeded the respective USEPA residential RSLs (**Table 4-3**); therefore, these compounds were evaluated in the HHSCC.

Basic statistics regarding the chemicals exceeding human health criteria in soil are presented in **Table 6-1**.

6.2.1.2 Groundwater

Nine groundwater samples were collected from TMWs in the Civil Engineering Yard AOI. Groundwater samples were analyzed using the methods discussed in **Section 4.3.1.1**. Two VOCs, three PAHs, GRO/DRO, one herbicide, and seven metals were detected at concentrations exceeding the USEPA residential RSLs or MCLs (**Table 4-5**), as presented in **Section 4.3.2**. The following chemicals were detected in the groundwater exceeding the screening criteria identified at the Civil Engineering and Storage Yard AOI:

- Chloroform;
- TCE;
- Benzo[b]fluoranthene;
- Dibenz(a,h)anthracene;
- Indeno[1,2,3-cd]pyrene;
- DRO/GRO;
- MCPP;

- Aluminum
- Arsenic;
- Chromium (Total);
- Cobalt;
- Iron;
- Lead;
- Manganese; and

• Thallium.

Basic statistics regarding the chemicals exceeding human health criteria in soil are presented in **Table 6-2**.

6.2.2 Building 3459 Area of Interest

6.2.2.1 Soil

Four soil samples were collected from shallow SBs (1-2 feet bgs) within the footprint of former Building 3459. Samples were analyzed using methods discussed in **Section 4.3.1.2**. Nine different pesticide compounds were detected at the site, as discussed in **Section 4.3.1.2.1**. 4'4'All pesticide detections did not exceed the applicable USEPA residential RSLs and no herbicides were detected (**Table 4-4**); therefore, no pesticides or herbicides were evaluated in the HHSCC for the Building 3459 AOI.

6.2.2.2 Groundwater

Groundwater sampling was not performed at Building 3459 for the Phase I RI.

6.3 Transport and Exposure Pathways

6.3.1 Civil Engineering Storage Yard Area of Interest

6.3.1.1 Soil

The Civil Engineering Storage Yard AOI currently has an asphalt cap as described in **Section 2.4**; however, it should be noted that although the asphalt prevents human exposure to surface and subsurface soils, surface water has the potential to pass through cracks in the asphalt and leach chemicals from the soil to groundwater (**Section 6.3.2**). Because several buildings are located on the Civil Engineering Storage Yard AOI, the soil vapor intrusion transport and exposure pathway was evaluated. Additionally, as discussed in **Section 6.1**, it is the objective of the USAF to obtain UU/UE at its contaminated sites; therefore, soil exposure pathways for future residential human receptors were evaluated. The following soil exposure pathways (**Section 5.2**) are complete or potentially complete:

- The inhalation of VOC contaminated soil vapor that has migrated the from groundwater transport and exposure pathway is potentially complete for all human receptors;
- The inhalation of contaminated airborne soil particles via the fugitive dust transport and exposure pathway is potentially complete for current intrusive site workers and future residents;
- The incidental ingestion of and dermal contact with the contaminated inland surface water and sediments via precipitation and runoff transport and exposure pathway is potentially complete for future residents.
- The inhalation of dust, incidental ingestion of, and dermal contact with the contaminated surface soil transport and exposure pathway is complete for the intrusive site worker and potentially complete for future residents;
- The inhalation of dust, incidental ingestion of, and dermal contact with the contaminated subsurface soil transport and exposure pathway is complete for the intrusive site worker and potentially complete for the future resident; and
- The incidental ingestion of and dermal contact with contaminated shallow groundwater transport and exposure pathway is potentially complete if the site worker is working at a depth in which groundwater would be encountered.

6.3.1.2 Groundwater

The only potentially complete groundwater transport exposure pathway at the Civil Engineering Storage Yard AOI is for the intrusive site worker via incidental ingestion and dermal contact with contaminated groundwater. This pathway will be complete if the intrusive site worker is working at a depth in which groundwater is encountered.

A potential transport and exposure pathway for future residents includes the incidental ingestion of and dermal contact with contaminated surface water in the Charles Branch if shallow groundwater migrates and seeps to the stream. Using the most conservative hydraulic conductivity values for the site (3.4 feet per day, **Section 2.2.2**) to calculate the effective velocity of groundwater, it would take approximately 40 years for groundwater to travel from the site to the Charles Branch via the approximately 1,000-foot groundwater flow path from the site to the Charles Branch. Therefore, this pathway is not considered to be complete.

6.3.2 Building 3459 Area of Interest

Transport and exposure pathways for human receptors at the Building 3459 AOI were not evaluated because contamination was not detected exceeding the USEPA residential RSLs.

6.4 Human Health Screening Criteria Comparison Summary

Analytical results of soil and groundwater samples collected from SWMU 56 were evaluated in the HHSCC to identify potential health impacts to current and future human receptors under current conditions.

Benzo(a)pyrene, arsenic, and barium, exist in soil at concentrations exceeding the screening criteria and exposure pathways are complete for both current and future receptors; therefore, benzo(a)pyrene, arsenic, and barium in the soil is considered to pose a potential risk to current and future human receptors within a limited area surrounding TMW-06 at the Civil Engineering Storage Yard AOI.

As described in **Section 1.0**, SWMU 56 is located within the ERP Site ST-14 TCE plume; therefore, the TCE concentrations detected in groundwater at SWMU 56 are likely attributed to the ST-14 plume; however, TCE and will be further evaluated in this investigation. A map showing the current ST-14 TCE plume configuration is included in **Appendix A**. –

Groundwater chemicals were detected at concentrations that pose a potential risk to both current and future human receptors with respect to SWMU 56. In addition, exposure pathways are complete or potentially complete for both current and future human receptors at the Civil Engineering Storage Yard. The groundwater CECs include:

- Chloroform;
- Trichloroethene
- Benzo[b]fluoranthene;
- Dibenz(a,h)anthracene;
- Indeno[1,2,3-cd]pyrene;
- DRO/GRO;
- MCPP;

- Aluminum
- Arsenic;
- Chromium (Total);
- Cobalt;
- Iron;
- Lead;
- Manganese; and
- Thallium.

7.0 ECOLOGICAL SCREENING CRITERIA COMPARISON

7.1 General Approach

As part of the Phase I RI, an ecological screening criteria comparison (ESCC) was performed for the Civil Engineering Storage Yard and Building 3459 AOIs. The primary objective of the ESCC is to assess potential ecological impacts under current conditions resulting from site-related chemicals. The ESCC evaluates if any of the following three conditions exist:

- 1. The site contains chemicals exceeding ecological screening benchmarks;
- 2. Ecological habitat is present on, adjacent to, or potentially impacted by the site; and
- 3. There are possible chemical transport pathways from the site to ecological receptors.

If **all three** of these conditions are met for a site, a potential risk to the environment is present and additional ecological evaluation may be appropriate. If one or more of the three conditions are not met, there is no risk to ecological receptor species and no further ecological evaluation is warranted. Even with a source of chemicals, without ecological receptors or a pathway for exposure of the receptors, there is no ecological risk.

In order to identify chemicals that pose a potential ecological risk, this ESCC compares the Phase I RI SWMU 56 laboratory analytical data against the USEPA Region 3 Biological Technical Assistance Group (BTAG) freshwater sediment and freshwater screening criteria and USEPA ecological soil screening levels (EcoSSLs) for plant, soil invertebrates, mammals, and birds. A constituent is identified as a potential ecological risk if a concentration exceeds ecological screening criteria.

The BERA (CH2M Hill, 2004) was used to assess site habitats and to determine potential ecological receptors based on the overall drainage area in which SWMU 56 is located (**Section 2.5**). The combination of site habitats and potential ecological receptors were then used to determine the potential for complete transport and exposure pathways.

7.2 Ecological Screening Criteria Comparison Evaluation

7.2.1 Civil Engineering and Storage Yard Area of Interest

7.2.1.1 Soil

A total of 15 soil samples and one duplicate were collected from nine TMWs at the Civil Engineering Storage Yard AOI. Samples were analyzed using the methods discussed in **Section 4.3.1.1**. Soil samples had concentrations of one VOC, three PAHs, one SVOC, one pesticide, and five metals that exceeded the ecological screening values (**Table 7-1**).

Basic statistics regarding the chemicals exceeding ecological criteria are presented in **Table 7**-**2**. It should be noted that the one of the SVOC exceedances (Benzo(b)fluoranthene) was also included with the PAH exceedances; the PAH analytical method was completed to achieve lower LODs.

7.2.1.2 Groundwater

Nine groundwater samples and one duplicate were collected from TMWs at the Civil Engineering Yard AOI. Groundwater samples were analyzed using methods discussed in **Section 4.3.1.1**. The two VOCs, two PAHs and 17 metals detected at concentrations that exceeded the USEPA Region 3 BTAG freshwater screening criteria (**Table 7-3**), include the following:

- Chloroform;
- TCE;
- Anthracene;
- Fluoranthene;
- Aluminum
- Arsenic;
- Barium;
- Beryllium;
- Cadmium;
- Chromium (Total);
- Cobalt;

- Copper;
- Iron;
- Lead;
- Manganese;
- Mercury;
- Nickel;
- Selenium;
- Thallium;
- Vanadium; and
- Zinc.

7.2.2 Building 3459 Area of Interest

7.2.2.1 Soil

Four soil samples were collected from shallow SBs (1-2 feet bgs) within the footprint of the former Building 3459. Samples were analyzed using methods discussed in **Section 4.3.1.2**. No herbicides were detected greater than laboratory LODs; however, six pesticides were detected at concentrations that exceed ecological screening levels. The following pesticides are present within the Building 3459 AOI at concentrations exceeding the ecological soil screening criteria:

- alpha-chlordane;
- gamma-chlordane;
- 4,4'-DDE;

- 4,4'-DDT;
- Endosulfan sulfate; and
- Heptachlor epoxide.

7.2.2.1 Groundwater

Groundwater sampling was not performed at Building 3459 for the Phase I RI.

7.3 Transport and Exposure Pathways

7.3.1 Civil Engineering and Storage Yard Area of Interest

The Civil Engineering Storage Yard AOI currently has an asphalt cap as described in **Section 2.4.** The asphalt cap limits both the habitat present and possible exposure to surface soil; therefore, there are no complete soil transport and exposure pathways for ecological receptors.

A potentially complete groundwater transport and exposure pathway for ecological receptors exists via ingestion of and dermal contact with inland surface water if contaminated groundwater seeps to the Charles Branch. Potential receptors within the Charles Branch Drainage Area are

discussed in **Section 2.5**; however, as identified in the BERA, the Charles Branch has a relatively poor habitat quality for aquatic biota. In addition, using the most conservative hydraulic conductivity values for the site, as discussed in **Section 6.3**, to calculate the effective velocity of groundwater, it would take approximately 40 years for groundwater to travel from the site to the Charles Branch, located approximately 1,000 feet from the site, allowing for chemicals to naturally attenuate prior to reaching any surface water body. Therefore, this pathway is not considered to be complete and no complete exposure pathways for ecological receptors exist at the site.

7.3.1 Building 3459 Area of Interest

As discussed in **Section 1.3**, the Building 3459 AOI is characterized by paved surfaces and mowed grass, providing little habitat value and no habitat for threatened and endangered species; therefore, no complete transport and exposure pathways for soil exist at the site.

A potentially complete pathway for ecological receptors exists, however, if chemicals in surface soil migrate to shallow groundwater via leaching/infiltration and then seep to the Cabin Branch. This is not considered to be a complete pathway as the Cabin Branch habitat (**Section 2.5**) is of relatively poor quality for aquatic biota. Additionally, using the hydraulic conductivity values discussed in **Section 6.3** to calculate the effective velocity of groundwater, it would take approximately 52 years for groundwater to travel from the site to the Cabin Branch, located approximately 1,300 feet from the site. Therefore, this pathway is not considered to be complete and no complete exposure pathways exist for ecological receptors at the site.

7.4 Ecological Screening Criteria Comparison Summary

Analytical results of soil and groundwater samples collected from SWMU 56 were evaluated in the ESCC to identify potential impacts to ecological receptors through potential transport and exposure pathways under current conditions. The ESCC determined that chemicals were detected at concentrations that pose a potential risk to ecological receptors; however, no complete transport and/or exposure pathways for ecological receptors exist at the site. No chemicals detected at the site pose a risk to ecological receptors.

8.0 CONCEPTUAL SITE MODEL AND CONCLUSIONS

The objective of this Phase I RI is to determine whether hazardous substances were released to the environment and whether hazardous substances have impacted the environment exceeding human health or environmental exposure criteria, resulting in a determination of CECs for the site. Soil and groundwater analytical data were evaluated by performing a HHSCC and ESCC to assess if hazardous substances detected in soil and groundwater pose a potential risk to human health or the environment. The following sections present the conclusions of this Phase I RI consisting of a CSM and identifying data gaps.

8.1 Conceptual Site Model

The HHSCC and ESCC compared chemicals detected at SWMU 56 in soil and groundwater to applicable screening criteria. The chemicals present at concentrations exceeding the screening criteria were then evaluated for complete transport and exposure pathways to human and ecological receptors. This evaluation process is presented graphically with a CSM for soil and groundwater chemicals at the Civil Engineering Storage Yard AOI on **Figure 8-1** and **Figure 8-2**, respectively, and for soil chemicals at the Building 3459 AOI on **Figure 8-3**.

8.1.1 Civil Engineering Storage Yard Area of Interest Conceptual Site Model

8.1.1.1 Soil

Figure 8-1 details that benzo(a)pyrene, arsenic, and barium concentrations present in soils at the Civil Engineering Storage Yard AOI pose a potential risk to human receptors and one VOC, three PAHs, and five metals present in soil that pose a potential risk to ecological receptors. Transport and exposure pathways are not complete or potentially complete at the site for ecological receptors due to the lack of habitat and, therefore, the chemicals present do not pose a risk to ecological receptors. As detailed in **Section 6.3**, transport and exposure pathways are complete and potentially complete for human receptors. Therefore, benzo(a)pyrene, arsenic, and barium are considered to be soil CECs at the Civil Engineering Storage Yard AOI (**Figure 8-4**).

8.1.1.2 Groundwater

Figure 8-2 details that two VOCs, three PAHs, DRO, GRO, one herbicide, and seven metals are present in groundwater at concentrations that pose a potential risk to human receptors and two VOCs, two PAHs, and 17 metals are present at concentrations that pose a potential risk to ecological receptors at the Civil Engineering Storage Yard AOI. Metal transport and exposure pathways are not complete or potentially complete at the site for ecological receptors due to the lack of habitat; therefore, the chemicals present do not pose a risk to ecological receptors.

A potentially complete groundwater transport and exposure pathway for the intrusive site worker was identified; therefore, groundwater CECs were identified for the Civil Engineering Storage Yard AOI. In addition, regardless of whether the groundwater transport pathway is incomplete, the CECs associated with groundwater will need to be further evaluated for the future residential receptors as groundwater is considered a public asset and the USEPA is mandated by law to evaluate risks associated with beneficial use. The HHSCC compared the chemical concentrations to the USEPA residential RSLs, USEPA MCLs, or MDE interim residential cleanup standards. The groundwater CECs identified include:

- Chloroform;
 - Arsenic;
- Lead;

- DRO/GRO;
- MCPP;
- Aluminum;

- Trichloroethene;
- Benzo[b]fluoranthene;
- Dibenz(a,h)anthracene;
- Indeno[1,2,3-cd]pyrene;

- Chromium (Total);
- Cobalt;
- Iron;
- Manganese; and
- Thallium.

Figure 8-5 presents the CEC concentrations and TMW locations. The following consideration should be taken into account with regards to the CECs.

Aluminum, Arsenic, Lead, Chromium (Total), Cobalt, Iron, and Thallium – Aluminum, arsenic, lead, chromium, cobalt, and iron, and thallium were detected at concentrations that exceed the USEPA MCLs or RSL in TMW-02. Due to slow recharge rates, TMW-02 produced limited amounts of water for monitoring and sampling and did not reach the turbidity goal of 10 NTUs. The final turbidity reading prior to sampling TMW-02 was 1,028 NTUs. Turbid groundwater samples can cause naturally-occurring metals that are sorbed to suspended solids to desorb into solution during the sample preservation process, causing elevated levels of dissolved metals to be detected. Minor concentrations of arsenic were detected in just two other TMWs (less than the laboratory limit of quantitation [LOQ]). All other detections of lead did not exceed the USEPA MCL.

8.1.2 Building 3459 Area of Interest Conceptual Site Model

8.1.2.1 Soil

Figure 8-3 details the pesticides that exist in soil at the Building 3459 AOI at concentrations that pose a potential risk to ecological receptors. Due to the lack of habitat, no complete or potentially complete transport and exposure pathways exist at the site; therefore, there are no soil CECs identified for the Building 3459 AOI.

8.2 Data Gaps

The following sections detail the data gaps identified following the conclusion of the Phase I RI.

8.2.1 Civil Engineering Storage Yard Area of Interest Data Gaps

The following data gaps have been identified for the Civil Engineering Storage Yard AOI:

- Barium (soil CEC) was detected in TMW-06 at the interval from 2 to 4 feet bgs. The detected concentration exceeded the screening criteria and poses a potential risk to current and future human receptors. The horizontal and vertical extents of barium contamination are not known.
- Chloroform (groundwater CEC) was detected in TMW-04, TMW-05, TMW-06, and TMW-07 and trichloroethene was detected at TMW-01, TMW-02, TMW-05, TMW06, and TMW-09 at concentrations that pose a potential risk to current and future human receptors. The horizontal extent of chloroform contamination, if any, in groundwater is not known.
- Aluminum, arsenic, chromium, cobalt, iron, lead, and thallium (groundwater CECs) were detected in TMW-02. Concentrations of arsenic, cobalt, and manganese were detected in TMW-05 at concentrations that pose a potential risk to current and future humans. Arsenic was also detected in TMW-08 at a concentration that poses a potential risk to current and future humans. The horizontal extent of arsenic, cobalt, iron, lead and thallium contamination, if any, in groundwater is not known.

- Chromium, reported as total chromium, was detected in all of the soil samples from the Civil Engineering Storage Yard AOI. Results for total chromium were compared to the insoluble salts of chromium (III) criterion; however, the total chromium data was not differentiated between chromium (III) and hexavalent chromium; therefore, the associated risk of chromium in soil is not known.
- As SWMU 56 has previously been identified as within the ST-14 TCE plume, the effects of SWMU 56 CECs on the ST-14 COC plume may need to be evaluated.

8.2.2 Building 3459 Area of Interest Data Gaps

No data gaps are identified as there are no soil CECs at the Building 3459 AOI. Additional investigation at the Building 3459 AOI is not warranted.

9.0 **RECOMMENDATIONS**

The objective of this Phase I RI is to determine whether hazardous substances were released to the environment and/or whether hazardous substances have impacted the environment exceeding human health or environmental exposure criteria. To that end, analysis of the data gathered during this Phase I RI indicates that CECs are present in the soil and groundwater at the Civil Engineering Storage Yard AOI; therefore, a RI is warranted. An RI may include analysis of the TCL VOCs, TCL PAHs, TCL herbicides, and TAL metals as a result of the CECs identified during this Phase I RI. Additionally, an objective of the RI will be to determine if the CECs identified during this Phase I RI in soil and groundwater will ultimately become COCs. The recommended specific investigations may include the following:

Investigation of barium-contaminated soil in the vicinity of TMW-06 – Barium was detected at TMW-06 in soil at a concentration that poses a potential risk to human receptors from 2 to 4 feet bgs. Surface and subsurface soils in the vicinity of TMW-06 should be investigated further to determine whether barium should remain a CEC at SWMU 56 and, if necessary, to define the vertical and horizontal extent of barium contamination in soil.

Investigation of chloroform in the vicinity of TMW-04 – Chloroform was detected at TMW-04, TMW-05, TMW-06, and TMW-07 in groundwater at concentrations that pose a potential risk to human receptors. Additional investigation of groundwater in the vicinity of TMW-04 is needed.

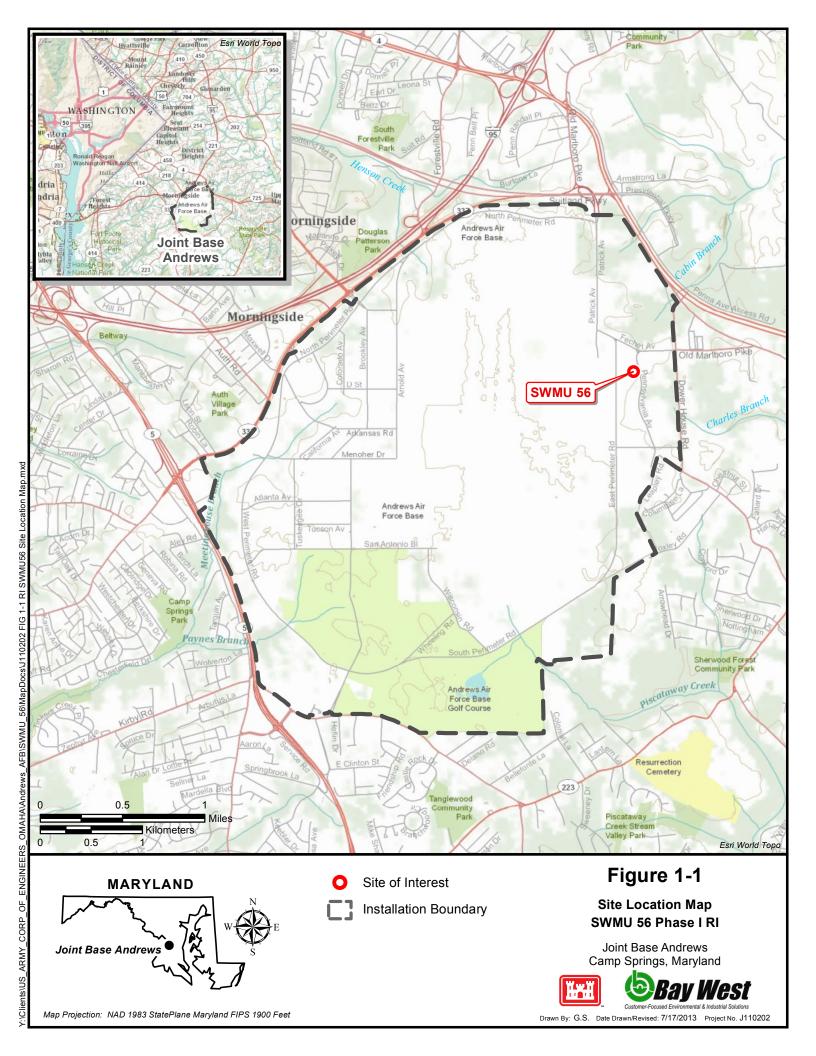
Investigation of groundwater CECs in the vicinity of TMW-02, TMW-05, and TMW-07 – CECs in groundwater were detected at TMW-02, TMW-05, and TMW-07 at concentrations that pose a potential risk to human receptors. Due to the high turbidity of the groundwater sample collected from TMW-02, additional investigation of groundwater is needed in the vicinity of TMW-02 to confirm analytical results, determine whether the CECs should remain with the site, and, if necessary, define the extent of the CECs. Additional investigation of groundwater is needed in the vicinity of TMW-05 and TMW-07 to confirm analytical results, determine whether the CECs should remain with the site, and, if necessary, define the extent of the CECs.

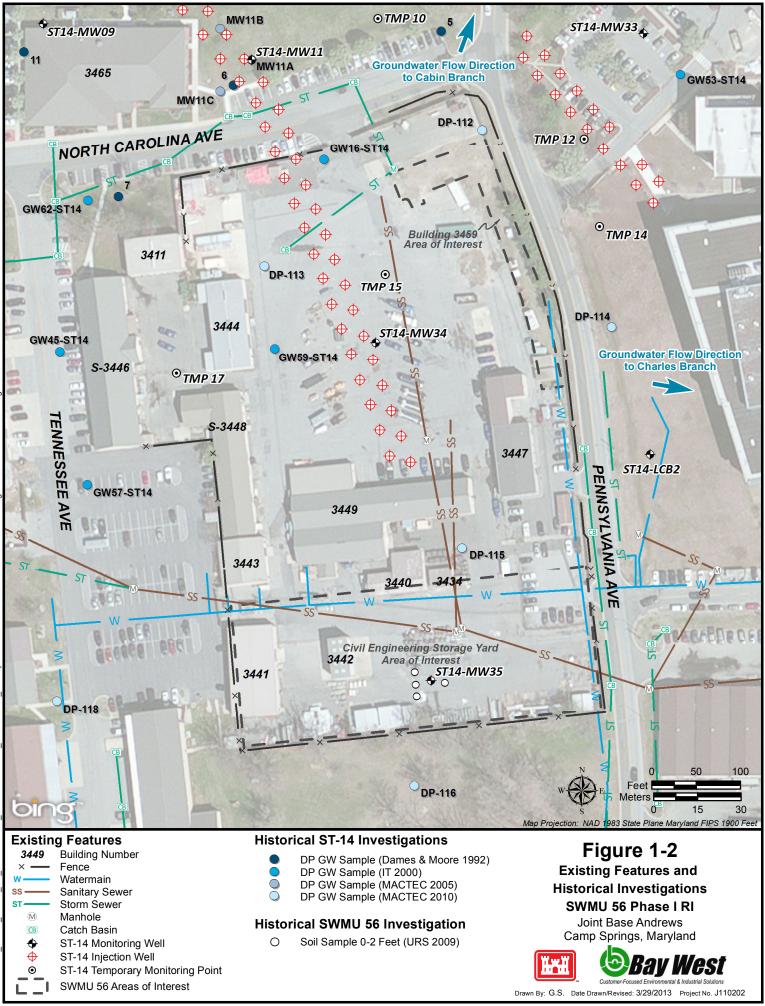
Investigation of chromium in soil – Chromium, reported as total chromium, was detected in all of the soil samples from the Civil Engineering Storage Yard AOI; however, the total chromium data was not differentiated between chromium (III) and hexavalent chromium; therefore, the chromium (III) and hexavalent chromium should be analyzed for in soil.

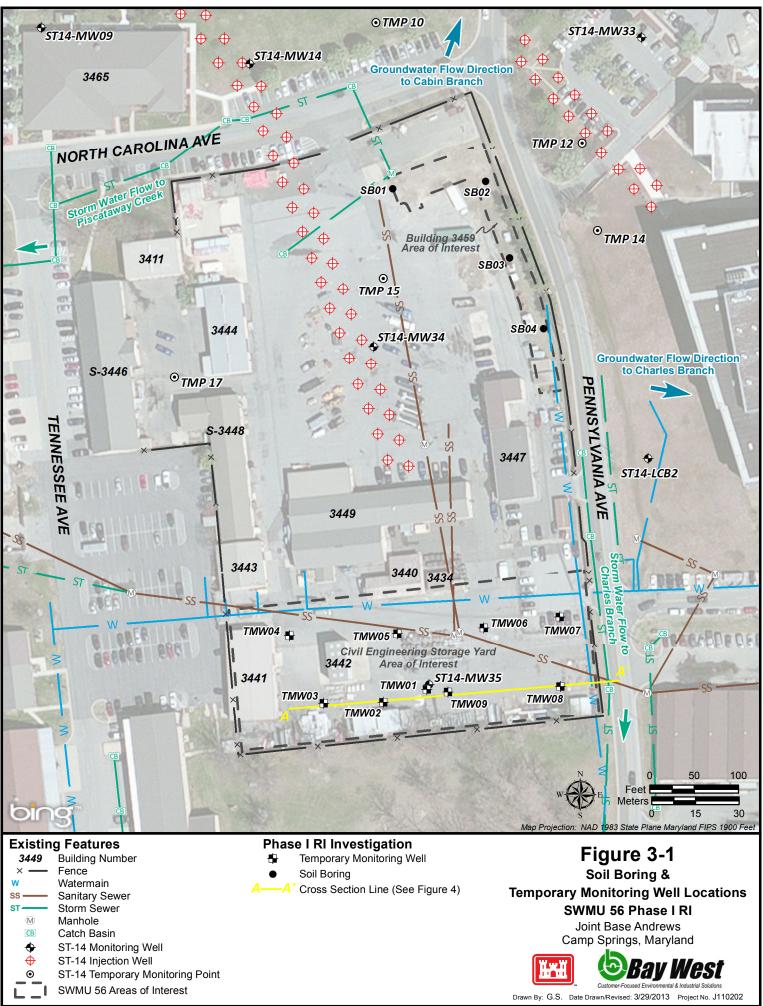
Evaluation of potentially comingled plumes – If there are COCs associated with SWMU 56, an evaluation of comingled plumes may be necessary to identify the effects of the SWMU 56 COCs on the ST-14 plume.

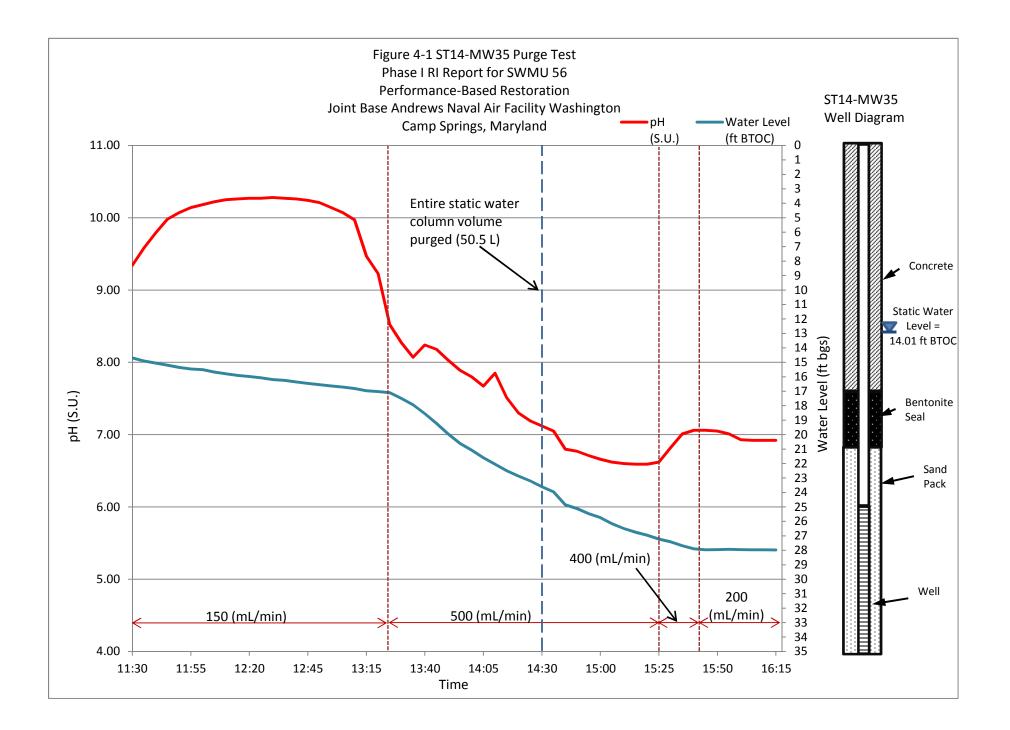
Investigation of Vapor Intrusion Pathways – As chloroform was detected in groundwater at a concentration that exceeds the USEPA residential RSL and occupied buildings exist at the Civil Engineering Storage Yard, possible vapor intrusion pathways should be investigated.

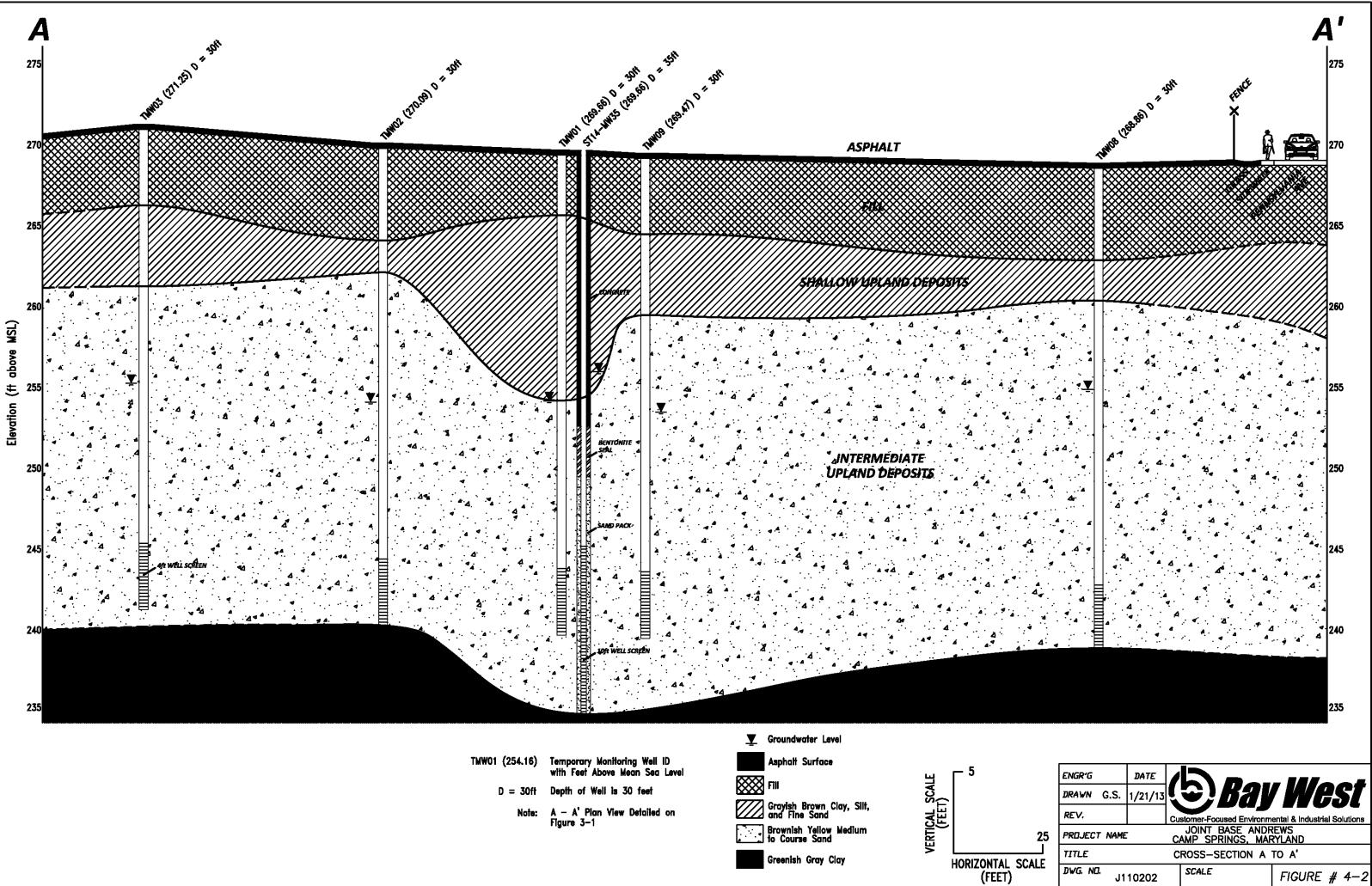
Site-specific baseline risk assessment – A site-specific baseline risk assessment is warranted following the investigations outlined above to evaluate the risk posed to human receptors by the impacted media and to establish final cleanup levels for the site, if any. Due to the lack of habitat at the site, a site-specific ecological risk assessment is not warranted.


No further investigation is warranted at the Building 3459 AOI as there were no CECs identified.


10.0 REFERENCES


- AECOM. 2010. Draft ST-14 Second Long-Term Monitoring Report, Andrews Air Force Base, Camp Springs, Maryland. June.
- AMEC. 2011. Annual RA-O Groundwater Monitoring Report for 2011; Former East Side Gas Station: Site ST-14; Joint Base Andrews Naval Air Facility Washington; Camp Springs, Maryland. June.
- CH2M Hill. 2004. Basewide Background Study, Andrews Air Force Base, Maryland. March.
- CH2M Hill. 2005. Basewide Ecological Risk Assessment Step 7, Andrews Air Force Base, Maryland. March.
- Dames & Moore, Inc. (D&M) 1994. *Final Technical Memorandum of Findings, Site ST08 Investigation, Andrews Air Force Base, Maryland*, prepared for Hazardous Waste Remedial Actions Program, Oak Ridge, Tennessee. November.
- DoD. 2010. DoD Quality Systems Manual for Environmental Laboratories, Version 4.2. October 25.
- EA Engineering, Science, and Technology (EA). 2012. Wetland Delineation Report, Joint Base Andrews, Outside the Airfield Wetland Delineation for Areas A – J. Prepared for Joint Base Andrews Naval Air Facility Andrews AFB, Maryland. December.
- Earth Tech. 2001. *Final Work Plan for the Remedial Investigation/Feasibility Study LF-05, Leroy's Lane Landfill Andrews Air Force Base, Maryland.* Prepared for Air Force Center for Environmental Excellence, Brooks AFB, Texas. July.
- Geo-Marine, Inc. 2001. Final Integrated Natural Resources Management Plan. Andrews Air Force Base, Maryland. Prepared for the Department of the Air Force. November.
- IT Corporation, 2000. Final Comprehensive Environmental Investigation, Site ST-14, Andrews *Air Force Base, Maryland*, prepared for Air Force Center for Environmental Excellence, Brooks Air Force base, Texas. December.
- Maryland Department of the Environment. 1988. Phase II RCRA Facility Assessment, Andrews Air Force Base, Camp Springs, Maryland.
- Maryland Department of the Environment. 2008. Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1. June.
- Shaw Environmental, Inc. (Shaw). 2005. Final Comprehensive Environmental Investigation Addendum, Site ST-14, Andrews Air Force Base, Maryland, prepared for Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas. November.
- URS. 2006. Final Basewide Conceptual Site Model; Andrews Air Force Base, Maryland. December.
- URS, Inc. 2009. Volume II Final Evaluation Report, Air Force Compliance Clean-Up Sites, Identification and Evaluation of Defense Environmental Restoration Account (DERA) Eligibility for Air Force Center for Engineering and the Environment (AFCEE), Multiple Locations, Andrews Air Force Base, Maryland. September.
- United States Air Force (USAF). 2011. Statement of Objectives for Performance-Based Remediation at Joint Base Andrews, Maryland. 29 April.


- United States Environmental Protection Agency/United States Air Force (USEPA/USAF). 2011. Federal Facility Agreement between the Unites States Environmental Protection Agency and the United States Air Force under CERCLA Section 120 in the matter of U.S. Department of the Air Force, Joint Base Andrews, Prince George's County, Maryland. September.
- USEPA. 2007. Record of Decision, ST-14 Former East Side Gas Station, Andrews Air Force Base, Maryland. September.
- USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, (OSWER 9240.1-48), EPA 540-R-08-01. June.
- USEPA. 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, (OSWER 9240.1-51), EPA 540-R-10-011. January.
- USEPA. 2012. Regional Screening Level/Maximum Contaminant Level Summary Table. Updated November 2012.
- USEPA. 2013. Exposure Assessment. http://www.epa.gov/region8/r8risk/hh_exposure.html. Accessed February 7, 2013.


Figures

ENV LOG WITH MULTIPLE SAMPLE COLUMNS#2.60T 1/16/13

Figure 8-1 Civil Engineering Storage Yard Area of Interest Conceptual Site Model for Soil

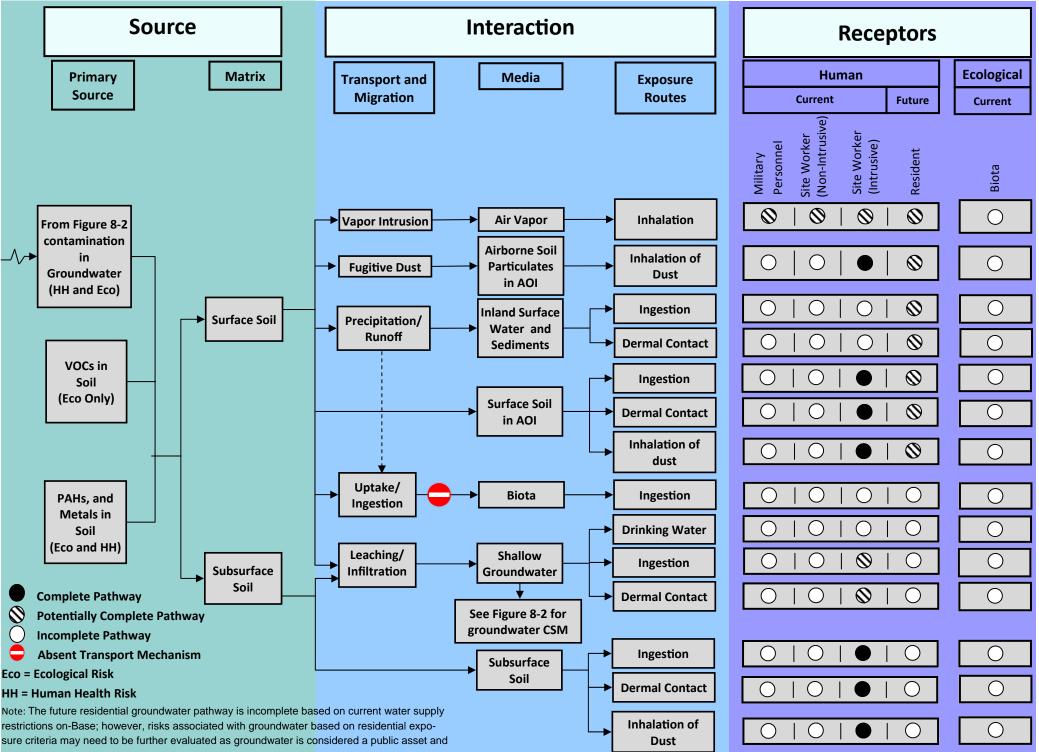
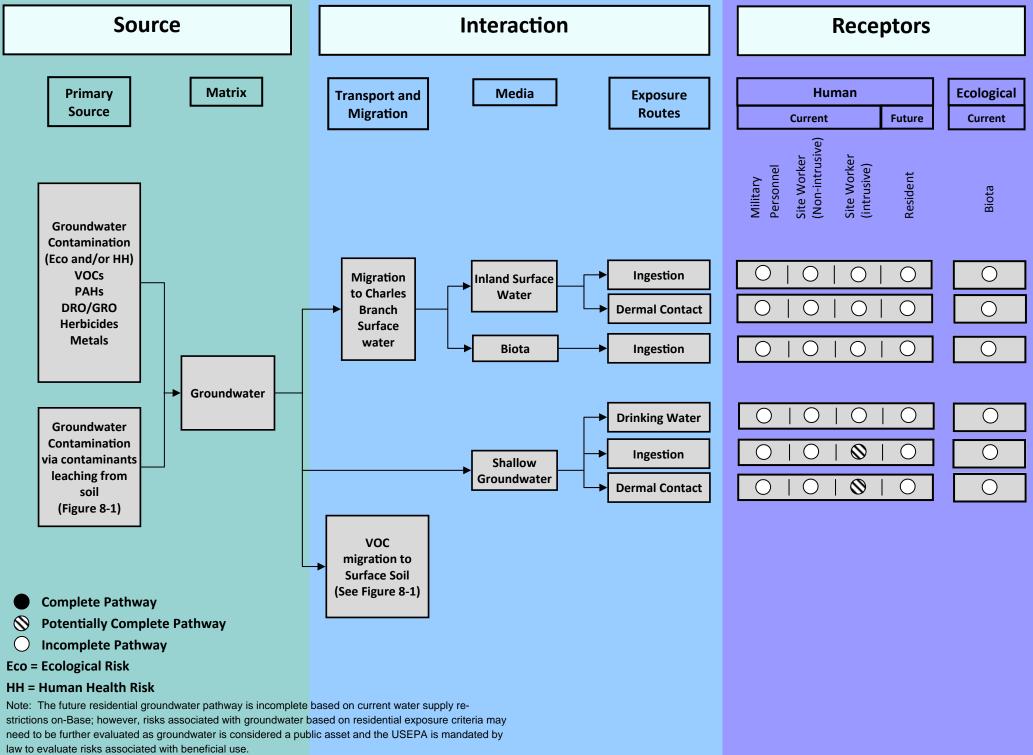
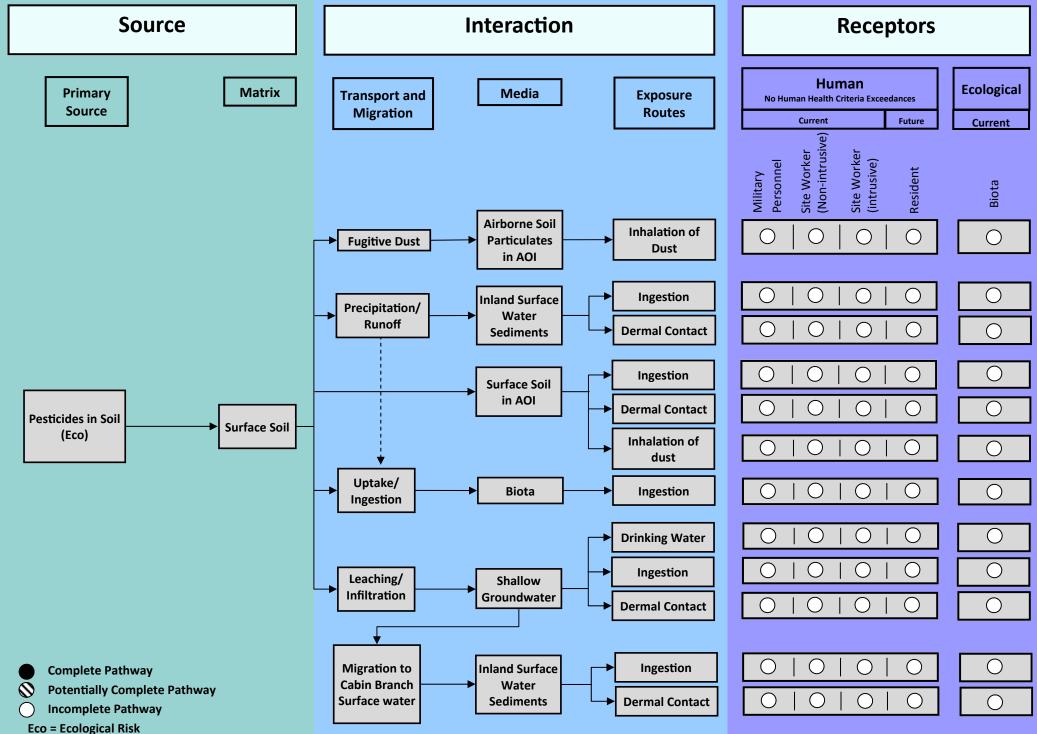
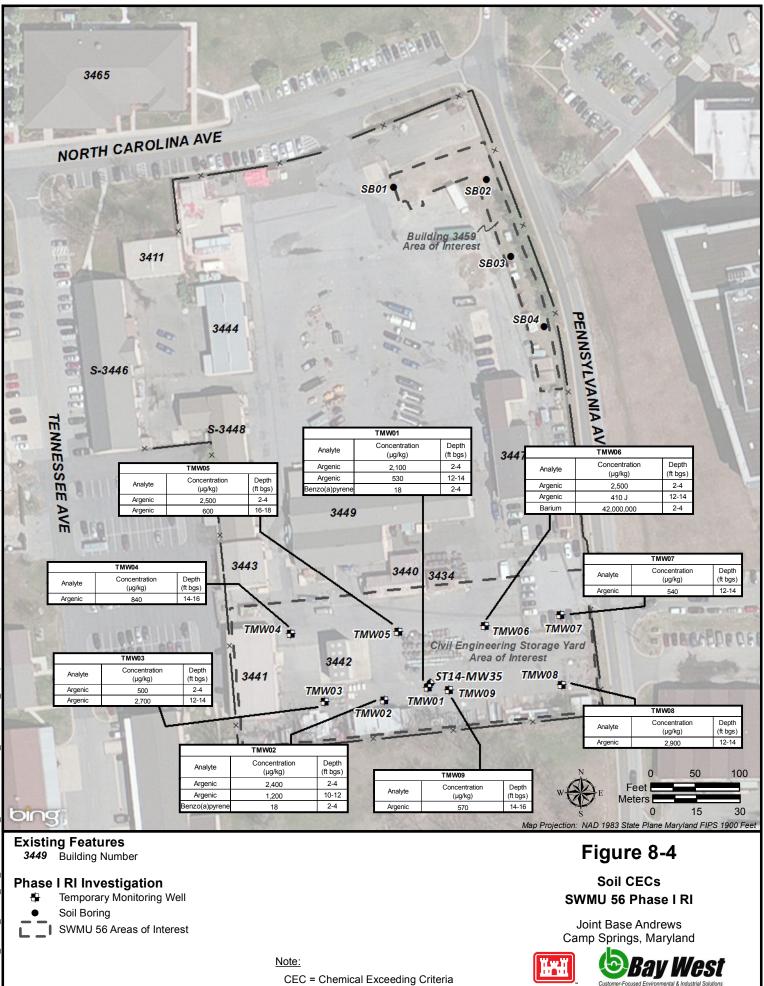
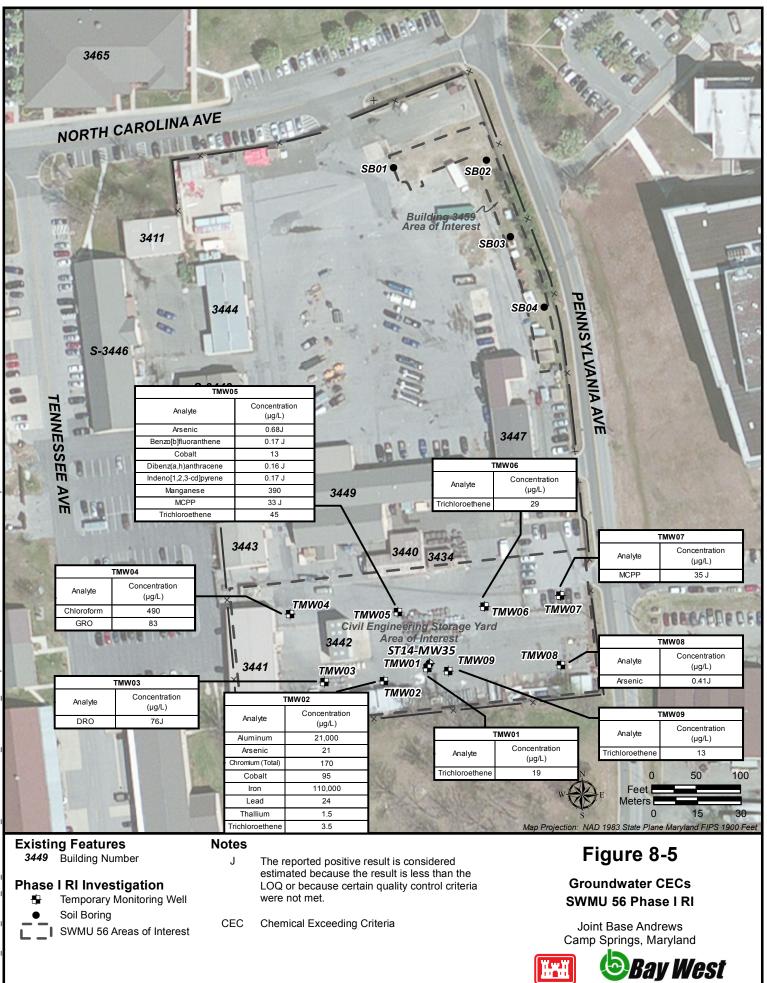





Figure 8-2 Civil Engineering Storage Yard Area of Interest Conceptual Site Model for Groundwater



Sample CECS.mxd Soil SWMU56 56\MapDocs\J110202 FIG 8-4 RI AFB\SWMU **OMAHA**\Andrews ENGINEERS Щ CORP Y:\Clients\US_ARMY

Drawn By: G.S. Date Drawn/Revised: 9/4/2013 Project No. J110202

Drawn By: G.S. Date Drawn/Revised: 9/17/2013 Project No. J110202

Tables

Table 4-1 ST14-MW35 pH Purge Test at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Well Depth:	34.87 ft BTOC
Static Water Level:	14.01 ft BTOC
Top of Screen:	25 ft bgs
Well Diamter:	4 inches
Water Column Volume	51.5 liters

Time	рН (S.U.)	Water Level (ft BTOC)	Tubidity (NTU)	Purge Rate (mL/min)	Tubing Depth (ft BTOC)	Volume Purged (liters)
11:30	9.34	14.70	1.50	150	24.5	0.00
11:35	9.58	14.91	1.20	150	24.5	0.75
11:40	9.79	15.05	0.80	150	24.5	1.50
11:45	9.98	15.20	1.20	150	24.5	2.25
11:50	10.07	15.35	0.90	150	24.5	3.00
11:55	10.14	15.46	1.00	150	24.5	3.75
12:00	10.18	15.50	0.60	150	24.5	4.50
12:05	10.22	15.67	1.00	150	24.5	5.25
12:10	10.25	15.79	0.80	150	24.5	6.00
12:15	10.26	15.90	0.70	150	24.5	6.75
12:20	10.27	15.98	0.60	150	24.5	7.50
12:25	10.27	16.07	0.50	150	24.5	8.25
12:30	10.28	16.19	0.50	150	24.5	9.00
12:35	10.27	16.25	0.20	150	24.5	9.75
12:40	10.26	16.36	0.50	150	24.5	10.50
12:45	10.24	16.46	0.50	150	24.5	11.25
12:50	10.21	16.55	0.30	150	24.5	12.00
12:55	10.14	16.63	0.20	150	24.5	12.75
13:00	10.07	16.71	0.60	150	24.5	13.50
13:05	9.97	16.81	0.30	150	24.5	14.25
13:15	9.47	16.97	0.40	150	24.5	15.75
13:20	9.23	17.02	0.40	150	24.5	16.50
13:25	8.52	17.10	0.70	500	24.5	19.00
13:30	8.27	17.50	1.00	500	24.5	21.50
13:35	8.07	17.94	1.20	500	24.5	24.00
13:40	8.24	18.55	0.90	500	24.5	26.50
13:45	8.18	19.22	0.80	500	24.5	29.00
13:50	8.03	19.95	0.80	500	24.5	31.50
13:55	7.89	20.61	1.20	500	24.5	34.00
14:00	7.80	21.07	0.90	500	24.5	36.50
14:05	7.67	21.60	0.90	500	24.5	39.00
14:10	7.85	22.04	5.10	500	24.5	41.50
14:15	7.51	22.50	2.60	500	24.5	44.00
14:20	7.30	22.86	7.80	500	27.5	46.50
14:25	7.19	23.20	3.30	500	27.5	49.00
14:30	7.12	23.61	5.50	500	27.5	51.50
14:35	7.05	23.96	2.90	500	27.5	54.00
14:45	6.80	24.85	3.50	500	27.5	59.00
14:50	6.77	25.11	2.90	500	27.5	61.50
14:55	6.71	25.46	4.00	500	27.5	64.00
15:00	6.66	25.74	3.00	500	27.5	66.50
15:05	6.62	26.16	2.90	500	27.5	69.00
15:10	6.60	26.49	7.10	500	27.5	71.50
15:15	6.59	26.75	7.10	500	27.5	74.00
15:20	6.59	26.96	5.90	500	27.5	76.50
15:25	6.62	27.22	8.10	400	31.0	78.50
15:30	6.82	27.41	4.90	400	31.0	80.50
15:35	7.01	27.69	3.10	400	31.0	82.50
15:40	7.06	27.90	3.90	400	31.0	84.50
15:45	7.06	27.96	3.90	200	31.0	85.50
15:50	7.05	27.95	3.70	200	31.0	86.50
15:55	7.01	27.93	3.10	200	31.0	87.50
16:00	6.93	27.95	3.50	200	31.0	88.50
16:05	6.92	27.96	3.20	200	31.0	89.50
16:10	6.92	27.96	2.90	200	31.0	90.50

Table 4-1 ST14-MW35 pH Purge Test at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Time	рН	Water Level	Tubidity	Purge Rate	Tubing Depth	Purged
	(S.U.)	(ft BTOC)	(NTU)	(mL/min)	(ft BTOC)	(liters)
16:15	6.92	27.98	3.10	200	31.0	91.50

Acronyms:

ft bgs = feet below ground surface

ft BTOC = feet below top of casing

mL/min = milliliters per minute

NTU = nephelometric turbidity unit

S.U. = standard unit

Table 4-2 Soil Field Screening Summary at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Boring ID	PID Ran	ge (ppm)	pH Rang	ge (S.U.)	Evidence of	Sample ID	Sample Interval	Laboratory Sample
Ũ	Lowest	Highest	Lowest	Highest	Contamination	•	(ft bgs)	Interval Selection Criteria
	0.5	2.6	4.47	6.83		SO07	2 – 4	Highest PID reading
TMW-01	(0-2 ft)	(2-4 ft)	(16-18 ft)	(0-2 ft)	None observed	SO05, SO06	12 – 14	Interval above groundwater
TMW-02	1.4	4.4	4.81	8.39	1 inch of stained black organic	SO08	2 – 4	Highest PID reading, highest pH, area of possible contamination
	(8-10 ft)	(2-4 ft)	(8-10 ft)	(2-4 ft)	material at 3 ft	SO09	10 – 12	Interval above groundwater
	1	2.9	6.35	7.97		SO12	2 – 4	Near surface sample
TMW-03	(0-2 ft)	(22-24 ft)	(6-8 ft)	(26-28 ft)	None observed	SO11	14 – 16	Interval above groundwater
TMW-04	1.4	5.8	6.88	7.1	None observed	SO13	14 – 16	Interval above groundwater
110100-04	(2-4 ft)	(20-22 ft)	(28-30 ft)	(14-16 ft)	None observed	3013	14 - 10	mervar above groundwater
TMW-05	2.6	6.3	6.72	7.11	None observed	SO14	2 – 4	Highest PID reading near surface
11111 00	(28-30 ft)	(14-16 ft)	(20-22 ft)	(6-8 ft)		SO15	16 – 18	Interval above groundwater
	2	6.9	4.31	6.05		SO02	2 – 4	Highest PID reading
TMW-06	(20-22 ft)	(2-4 ft)	(12-14 ft)	(0-2 ft)	None observed	SO03	12 – 14	Interval above groundwater
TMW-07	0.4	2.7	5.24	7	None observed	SO01	12 – 14	Interval above groundwater
110100-07	(8-10 ft)	(20-22 ft)	(2-4 ft)	(24-26 ft)	None observed	3001	12 - 14	interval above groundwater
TMW-08	0.8	2.1	4.41	5.49	None observed	SO04	12 – 14	Interval above groundwater
10100 00	(8-10 ft)	(0-2 ft)	(26-28 ft)	(12-14 ft)		0004	12 14	
TMW-09	0.8	3.7	6.54	7.79	None observed	SO10	14 – 16	Interval above groundwater
	(22-24 ft)	(18-22 ft)	(6-8 ft)	(28-30 ft)		0010		internal aborto groundwater

Acronyms:

ft = feet

ft bgs = feet below ground surface

ID = identification

PID = photoionization detector

ppm = parts per million

TMW = temporary monitoring well

S.U. = standard unit

Table 4-3 Soil Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

	USEPA Residential	MDE Interim Residential Cleanup Standards ³	Background UTL Soil	SWMU56- TMW01- SO05	SWMU56- TMW01- SO06 (DUP)	SWMU56- TMW01- SO07	SWMU56- TMW02- SO08	SWMU56- TMW02- SO09	SMW56- TMW03- SO11	SMW56- TMW03- SO12	SMW56- TMW04- SO13	SMW56- TMW05- SO14	SMW56- TMW05- SO15	SWMU56- TMW06- SO02	SWMU56- TMW06- SO03	SWMU56- TMW07- SO01	SWMU56- TMW08- SO04	SWMU56- TMW09- SO10
	RSL ² (µg/kg)	(µg/kg)	Boring ⁴ (µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft
VOCs by SW-846 Method 8 1,3,5-Trimethylbenzene	780.000	NE	NE	1.1 U	0.78 U	0.61 J	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
2-Butanone (MEK)	28,000,000	NE	NE	6.9 U	5.0 U	13 J	20 J	5.1 U	4.8 U	5.0 U	4.4 U	6.5 U	5.2 U	7.8 J	6.3 U	7.0 U	5.3 U	6.2 U
Acetone	61,000,000	NE	NE	9.6 J	16 U	96 J	97 J	16 U	15 U	16 U	14 U	21 U	16 U	97	9.9 U	11 U	8.3 U	20 U
Carbon disulfide	820.000	NE	NE	1.1 U	0.78 U	0.44 J	0.87 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.53 J	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
cis-1,2-Dichloroethene	160,000	NE	NE	1.1 U	0.78 U	0.76 U	120 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	50	0.99 U	1.1 U	0.83 U	0.98 U
Naphthalene	3,600	NE	NE	1.1 U	0.78 U	1.3 J	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
Tetrachloroethene	22,000	NE	NE	1.1 U	0.78 U	0.76 U	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	1.8 J	0.99 U	1.1 U	0.83 U	0.98 U
Toluene	5,000,000	NE	NE	1.1 U	0.78 U	0.76 U	1.2 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
trans-1,2-Dichloroethene	150,000	NE	NE	1.1 U	0.78 U	0.76 U	9.6 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	4.4	0.99 U	1.1 U	0.83 U	0.98 U
Trichloroethene	910	NE	NE	0.86 U	0.63 U	0.61 U	0.89 U	0.64 U	0.60 U	0.62 U	0.55 U	0.82 U	0.65 U	34	0.49 J	0.88 U	0.66 U	0.78 U
PAHs by SW-846 Method 8	270-SIM					<u> </u>					<u> </u>		l	<u> </u>				
Acenaphthene	3,400,000	NE	45.9	0.34 U	0.27 U	2.2 J	0.31 U	0.29 U	0.28 U	0.27 U	0.27 U	0.31 U	0.28 U	0.31 U	0.28 U	0.27 U	0.27 U	0.31 U
Acenaphthylene	NE	NE	8.8	0.84 U	0.68 U	7.7	4.0 J	0.72 U	0.70 U	0.69 U	0.68 U	0.77 U	0.69 U	1.0 J	0.71 U	0.67 U	0.68 U	0.77 U
Anthracene	17,000,000	NE	NE	3.2 U	2.5 U	5.6	3.7 J	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.9 U	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[a]anthracene	150	NE	11.2	3.2 U	2.5 U	14	14	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	1.9 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[a]pyrene	15	NE	3.5	3.2 U	2.5 U	18	16	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.2 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[b]fluoranthene	150	NE	7.6	3.2 U	2.5 U	34	23	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	5.3 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[g,h,i]perylene	NE	NE	4.8	3.2 U	2.5 U	18	12	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	4.0 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[k]fluoranthene	1,500	NE	NE	3.2 U	2.5 U	9.4	7.6	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	1.5 J	2.6 U	2.5 U	2.6 U	2.9 U
Chrysene	15,000	NE	26.6	3.2 U	2.5 U	30	25	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.7 J	2.6 U	2.5 U	2.6 U	2.9 U
Dibenz(a,h)anthracene	15	NE	17	3.2 U	2.5 U	3.9 J	3.4 J	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.9 U	2.6 U	2.5 U	2.6 U	2.9 U
Fluoranthene	2,300,000	NE	22.6	3.2 U	2.5 U	35	23	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.5 J	2.6 U	2.5 U	2.6 U	2.9 U
Fluorene	2,300,000	NE	11.8	0.84 U	0.68 U	5.4 J	4.0 J	0.72 U	0.70 U	0.69 U	0.68 U	0.77 U	0.69 U	0.77 U	0.71 U	0.67 U	0.68 U	0.77 U
Indeno[1,2,3-cd]pyrene	150	NE	5.8	3.2 U	2.5 U	17	11	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.1 J	2.6 U	2.5 U	2.6 U	2.9 U
Naphthalene	3,600	NE	NE	0.84 U	0.68 U	22	37	0.72 U	0.70 U	0.69 U	0.68 U	0.66 J	0.69 U	1.2 J	0.71 U	0.67 U	0.68 U	0.77 U
Phenanthrene	NE	NE NE	9.3 13.9	3.2 U 3.2 U	2.5 U 2.5 U	24 42	28 31	2.7 U 2.7 U	2.6 U 2.6 U	2.6 U 2.6 U	2.5 U 2.5 U	2.9 U 2.9 U	2.6 U 2.6 U	2.1 J 4.0 J	2.6 U 2.6 U	2.5 U 2.5 U	2.6 U 2.6 U	2.9 U 2.9 U
Pyrene	1,700,000	NL.	15.9	5.2 0	2.5 0	42	31	2.7 0	2.0 0	2.0 0	2.5 0	2.90	2.0 0	4.0 J	2.0 0	2.5 0	2.00	2.90
SVOCs by SW-846 Method			1	44.11	00.1	2011	40.1	00.1	00011	24011	24011	47.1	200 11	1 40 1	07.1	0511	00.1	200.11
Benzyl alcohol	6,100,000	NE	NE	41 U	26 J	38 U	42 J	39 J	680 U	340 U	340 U	47 J	360 U	42 J	27 J	35 U 35 U	22 J	390 U
Benzo[a]pyrene	15	NE	3.5	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U 24 U	39 U
Benzo[b]fluoranthene	150	NE	7.6	41 U	36 U	44 J	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Chrysene	15,000	NE	26.6	41 U	36 U	38 J	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Dibenz(a,h)anthracene	15	NE	17	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
N-Nitrosodimethylamine	2.3	NE	NE	82 U	72 U 72 U	76 U	77 U 77 U	71 U	140 U 140 U	69 U	69 U	76 U 76 U	71 U 71 U	77 U	69 U 69 U	69 U	68 U	78 U 78 U
N-Nitrosodi-n-propylamine	69	NE	NE	82 U 41 U	72 U 36 U	76 U 47 J	20 J	71 U 35 U	140 U 68 U	69 U 34 U	69 U 34 U	76 U 38 U	36 U	77 U 38 U	69 U 35 U	69 U	68 U 34 U	78 U 39 U
Pyrene	1,700,000	NE	13.9	017	50.0	0 17	200	55.0	000	0+0	540	000	30.0	30.0	55.0	35 U	570	000

Table 4-3 Soil Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

	USEPA Residential	MDE Interim Residential Cleanup	Background UTL Soil	SWMU56- TMW01- SO05	SWMU56- TMW01- SO06 (DUP)	SWMU56- TMW01- SO07	SWMU56- TMW02- SO08	SWMU56- TMW02- SO09	SMW56- TMW03- SO11	SMW56- TMW03- SO12	SMW56- TMW04- SO13	SMW56- TMW05- SO14	SMW56- TMW05- SO15	SWMU56- TMW06- SO02	SWMU56- TMW06- SO03	SWMU56- TMW07- SO01	SWMU56- TMW08- SO04	SWMU56- TMW09- SO10
Analyte ¹	RSL ² (µg/kg)	Standards ³ (µg/kg)	Boring ⁴ (µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft
GRO/DRO by SW-846 Met		(69,69)	20111g (µg/11g/															<u> </u>
Diesel Range Organics	NE	230,000	NE	960 J	810 J	9,500	4,000 J	1,700 J	4,400	880 J	1,800 J	1,900 J	830 J	4,400	1,100 J	1,600 J	2,000 J	2,900 J
Gasoline Range Organics	NE	230,000	NE	290 J	260 J	4,900	350 J	420 U	1,500	530 U	510 0	340 J	270 J	270 J	600 U	370 J	410 U	330 J
Pesticides by SW-846 Me	thod 8081A							L							L			
4,4'-DDD	2,000	NE	NE	0.86 U	0.72 U	1.8 J	1.7 J	0.74 U	0.73 U	0.74 U	0.73 U	0.77 U	0.74 U	0.79 U	0.75 U	0.73 U	0.72 U	0.78 U
4,4-DDE	1,400	NE	2.7	0.58 U	0.48 U	1.2 J	4./	0.49 U	0.49 U	0.49 0	0.48 U	0.51 U	0.50 U	0.53 U	0.50 U	0.49 0	0.48 U	0.52 0
PCBs by SW-846 Method	8082A																	
PCBs below LOD																		
Herbicides by SW-846 Me	thod 8151A						L				<u>.</u>	•	L	<u>.</u>	L	<u>.</u>		
Herbicides below LOD																		
Metals by SW-846 Method	6010B								•	•				•		•	•	
Aluminum	77,000,000	NE	27,900,000	4,300,000	5,100,000	12,000,000	11,000,000	7,000,000	24,000,000	4,800,000	3,600,000	24,000,000	4,100,000 J	18,000,000	2,900,000	1,800,000	1,600,000	4,800,000
Arsenic	390	NE	5,700	370 J	530	2,100	2,400	1,200	2,700	500	840	2,500	600	2,500	410 J	540	2,900	570
Barium	15,000,000	NE	53,600	10,000	11,000	31,000	40,000	11,000	42,000	7,500	7,400	40,000	13,000	42,000,000	9,300,000	580	4,300,000	13,000
Beryllium	160,000	NE	1,060	42 J	94 J	250	240	68 J	270	33 J	50 J	220	43 J	310	53 J	25 J	36 J	83 J
Cadmium	70,000	NE	39	55 J	97 J	150	140	54 J	170	69 J	53 J	170	58 J	180	65 J	38 J	29 J	81 J
Calcium	NE	NE	945,000	150	150	580	1,100	130	46 J	38 J	67 J	320	30 J	480	29 J	57 J	150	20 J
Chromium	120,000,000/290	NE	31,200	3,700 J	6,200 J	13,000	14,000	5,500	21,000	4,100	4,500	22,000	3,200	19,000	4,500	2,400	11,000	3,600
Cobalt	23,000	NE	6,200	200 J	330 J	1,900	1,800	160	1,700	170	200	1,600	110	2,700	160	100	160	250
Copper	3,100,000	NE	11,200	1,100 J	1,700 J	5,200	3,900	1,400 J	4,300	1,500 J	2,300 J	3,700	2,900	4,100	1,500 J	1,000 J	2,000 J	1,400 J
Iron	55,000,000	NE	22,800,000	1,400,000	1,500,000	10,000,000	9,100,000	6,400,000	21,000,000	1,800,000	3,100,000	21,000,000	2,300,000 J	16,000,000	1,300,000	3,200,000	14,000,000	1,200,000
Lead	400,000	NE	37,100	1,800 J	3,200 J	16,000	12,000	2,400	9,300	1,500	1,900	10,000	1,900	9,800	3,600	1,100	890	1,500
Magnesium	NE	NE	1,100,000	130,000	140,000	640,000	800,000	140,000	720,000	92,000	78,000	680,000	68,000	790,000	63,000	42,000	33,000	130,000
Manganese	1,800,000	NE	174,000	3,600 J	5,800 J	36,000	39,000	1,100	8,700	1,300	1,800	15,000	1,100	35,000	1,400	940	4,200	1,400
Mercury	10,000	NE	67	18 U	15 U	21	24	17 U	16 U	16 U	15 U	22	15 U	11 J	15 U	16 U	16 U	16 U
Molybdenum	390,000	NE	1,420	81 J	100 J	250	310	85 J	230	84 J	160 J	220 J	310 J	330	110 J	97 J	1,000	170 J
Nickel	1,500,000	NE	11,300	540 J	920 J	4,300	4,900	500	4,500	610	780	4,200	420	5,400	420	320 J	950	590
Potassium	NE	NE	843,000	240,000 J	330,000	330,000	360,000	160,000 J	350,000	110,000 J	92,000 J	400,000	210,000 J	440,000	220,000 J	89,000 J	68,000 J	230,000 J
Selenium	390,000	NE	NE	310 J	480 J	680	850	320 J	680	400 J	420 J	700	470 J	680	310 J	260 J	170 J	420 J
Silver	390,000	NE	NE	71 U	21 J	45 J	31 J	65 U	26 J	59 U	26 J	34 J	57 U	34 J	57 U	60 U	58 U	69 U
Sodium	NE	NE	43,400	120,000 U	96,000 U	75,000 J	82,000 J	95,000 U	100,000 U	600,000	97,000 U	120,000 J	100,000 U	100,000 U	100,000 U	92,000 U	96,000 U	100,000 U
Thallium	780	NE	332	37 J	65 J	120	150	35 J	180	26 J	27 J	190	30 J	210	42 J	47 J	11 J	41 J
Vanadium	390,000	NE	40,000	5,500	9,900	22,000	22,000	6,800	36,000	3,600	3,700	37,000	4,900 J	33,000	6,700	3,800	2,600	6,600
Zinc	23,000,000	NE	29,200	1,500 J	2,400 J	20,000	15,000	1,000 J	8,200	1,000 J	1,300 J	8,600	750 J	15,000	960 J	580 J	2,100 J	1,500 J

Bold values indicate the analyte was detected.

Result exceeds established screening criteria and the Background UTL, if available.

Result exceeds established screening criteria but is less than Background UTL.

Screening criteria is lower than the LOD.

Notes:

¹ All analyte concentrations are reported in µg/kg.

² The Screening Criteria is the USEPA RSL Summary Table updated November 2012 (USEPA 2012).

³ The Screening Criteria is the MDE Interim Final Cleanup Standards (MDE 2008). The MDE Interim Final Cleanup Standards are to be considered only and not intended to be primary cleanup criteria at CERCLA sites.

Table 4-3 Soil Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

	USEPA Residential	MDE Interim Residential Cleanup Standards ³	Background UTL Soil	SWMU56- TMW01- SO05	SWMU56- TMW01- SO06 (DUP)	SWMU56- TMW01- SO07	SWMU56- TMW02- SO08	SWMU56- TMW02- SO09	SMW56- TMW03- SO11	SMW56- TMW03- SO12	SMW56- TMW04- SO13	SMW56- TMW05- SO14	SMW56- TMW05- SO15	SWMU56- TMW06- SO02	SWMU56- TMW06- SO03	SWMU56- TMW07- SO01	SWMU56- TMW08- SO04	SWMU56- TMW09- SO10
Analyte ¹	RSL ² (µg/kg)	(µg/kg)	Boring ^₄ (µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

⁵ Insoluble salts of chromium (III) (16065-83-1) have an RSL of 120,000,000 μg/kg. Chromium (IV) (18540-29-9) has an RSL of 290 μg/Kg. Results for total chromium will be compared to the insoluble salts criterion. **Qualifiers:**

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

UJ = The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.

Acronyms:

µg/kg = microgram per kilogram AOI = Area of Interest DRO = diesel range organics GRO = gasoline range organics LOQ = limit of quantitation LOD = limit of detection MDE = Maryland Department of the Environment NE = none established PAHs = polynuclear aromatic hydrocarbons PCB = polychlorinated biphenyl SO = soil SVOC = semi-volatile organic compound SWMU = solid waste management unit RSL = Regional Screening Level TMW = temporary monitoring well USEPA = United States Envionmental Protection Agency UTL = Upper Tolerance Limit VOC = volatile organic compound

Table 4-4 Groundwater Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

Analyte ¹	USEPA Residential RSL ² (µg/L)	USEPA MCL ² (µg/L)	MDE Interim Residential Cleanup Standards ³ (µg/L)	Background UTL Groundwater Total ⁴ (µg/L)	ST14-MW35 December 2012 (µg/L)	SWMU56- TMW01-GW05	SWMU56- TMW01-GW06 (DUP)		SWMU56- TMW03-GW09	SWMU56- TMW04-GW10	SWMU56- TMW05-GW04	SWMU56- TMW06-GW01	SWMU56- TMW07-GW03	SWMU56- TMW08-GW02	SWMU56- TMW09-GW07
VOCs by SW-846 Method 826		(1-37		(-3,-)	(F3F-7		()								
1.1.2.2-Tetrachloroethane	0.066	NE	NE	NE	0.20 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
1,1,2-Trichloroethane	0.24	5	NE	NE	0.32 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
1,1-Dichloroethane	2.4	NE	NE	NE	0.16 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.21 J	0.20 U	0.20 U	0.20 U	0.20 U
1,1-Dichloroethene	260	7	NE	NE	0.14 U	0.20 U	0.20 U	0.20 U	0.20 U	0.17 J	0.53 J	0.30 J	0.20 U J	0.20 U	0.20 U
1,2,3-Trichloropropane	0.00065	NE	NE	NE	0.77 U	0.80 U	0.80 U	0.80 U	0.40 U	0.40 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane (Ethylene	0.00032	0.2	NE	NE	0.81 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Dibromide)	0.0065	0.05	NE	NE	0.18 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1,2-Dichloroethane	0.15	5	NE	NE	0.13 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Carbon tetrachloride	0.39	5	NE	NE	0.19 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
Chloroform	0.19	80	NE	NE	0.46 U	1.6 U	1.6 U	1.6 U	1.6 U	490	0.38 J	0.81 J	0.33 J	0.20 U	1.6 U
cis-1,2-Dichloroethene	28	70	NE	NE	1.9	1.4	1.6	0.16 J	0.20 U	1.0 U	9.0	4.9	0.20 U	0.20 U	1.1
Dichlorobromomethane	0.12	80	NE	NE	0.17 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Naphthalene	0.14	NE	NE	NE	0.22 U	0.80 U	0.80 U	0.80 U	0.80 U	1.0 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U
Trichloroethene	0.44	5	NE	NE	12	17	19	3.5	0.20 U	4.2 U	45	29	0.31 J	0.20 U	13
Trichlorofluoromethane	1100	NE	NE	NE	0.29 U	0.80 U	0.80 U	0.80 U	0.80 U	0.93 J	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U
Vinyl chloride	0.015	2	NE	NE	0.40 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U
PAHs by SW-846 Method 8270	0-SIM		-							-					
Anthracene	1300	NE	NE	NE	NA	0.020 U	0.020 U	0.021 U	0.022 U	0.021 U	0.029 J	0.020 U	0.022 U	0.020 U	0.022 U
Benzo[a]anthracene	0.029	NE	NE	NE	NA	0.10 UJ	0.099 UJ	0.11 U	0.011 U	0.011 U	0.11 UJ	0.10 U	0.011 U	0.010 U	0.11 U
Benzo[a]pyrene	0.0029	0.2	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.095 UJ	0.010 U	0.011 U	0.010 U	0.011 U
Benzo[b]fluoranthene	0.029	NE	NE	NE	NA	0.10 UJ	0.099 UJ	0.11 U	0.11 UJ	0.011 U	0.17 J	0.10 U	0.10 U	0.10 U	0.11 U
Benzo[g,h,i]perylene	NE	NE	NE	NE	NA	0.010 U	0.099 UJ	0.11 U	0.011 U	0.011 U	0.15 J	0.010 U	0.011 U	0.010 U	0.11 U
Benzo[k]fluoranthene	0.29	NE	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.17 J	0.010 U	0.011 U	0.010 U	0.011 U
Dibenz(a,h)anthracene	0.0029	NE	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.16 J	0.010 U	0.011 U	0.010 U	0.011 U
Fluoranthene	630	NE	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.092 J	0.11 U	0.14 U J	0.010 U	0.011 U	0.010 U	0.011 U
Fluorene	220	NE	NE	NE	NA	0.020 U	0.020 U	0.021 U	0.14 J	0.067 J	0.019 U	0.020 U	0.022 U	0.020 U	0.022 U
Indeno[1,2,3-cd]pyrene	0.029	NE	NE	NE	NA	0.020 U	0.020 U	0.021 U	0.022 U	0.021 U	0.17 J	0.020 U	0.022 U	0.020 U	0.022 U
Naphthalene	0.14	NE	NE NE	NE	NA	0.0072 J 0.012 U	0.0086 J 0.012 U	0.0079 J 0.013 U	0.039 J 0.23 J	0.13 0.11	0.0075 J 0.095 UJ	0.021 J 0.10 U	0.0079 J 0.013 U	0.016 J 0.012 U	0.0080 J 0.013 U
Phenanthrene	NE	NE		NE	NA	0.012 0	0.012 0	0.013 0	0.23 5	0.11	0.093 03	0.10 0	0.013 0	0.012 0	0.013 0
SVOCs by SW-846 Method 82 1.2.4-Trichlorobenzene	0.99	70	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
, ,	0.067	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U 0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
1,2-Diphenylhydrazine 1,4-Dichlorobenzene			NE			0.96 U									0.96 U
	0.42	75		NE	NA		1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	
2,2'-Oxybis[1-chloropropane] 2,4-Dinitrotoluene	0.31	NE NE	NE NE	NE NE	NA NA	0.96 U 3.8 U	1.1 U 4.5 U	1.1 U 4.3 U	1.1 U 4.4 U	1.1 U 4.4 U	0.98 U 3.9 U	0.98 U 3.9 U	1.1 U 4.4 U	1.1 U 4.3 U	0.96 U 3.8 U
3,3'-Dichlorobenzidine	0.2	NE	NE	NE	NA	9.6 U	4.5 U 11 U	4.3 U 11 U	4.4 U	4.4 U 11 U	9.8 U	9.8 U	4.4 U 11 U	4.3 U 11 U	9.6 U
4,6-Dinitro-2-methylphenol	1.2	NE	NE	NE	NA	9.6 U 9.6 U	11 U	11 U	11 U	11 U	9.8 U 9.8 U	9.8 U 9.8 U	11 U	11 U	9.6 U
4,o-Dinitro-2-methyphenol	0.32	NE	NE	NE	NA	9.8 U	5.7 U	5.3 U	5.5 U	5.5 U	9.8 U 4.9 U	9.8 U 4.9 U	5.5 U	5.4 U	9.8 U
4-Nitroaniline	3.3	NE	NE	NE	NA	4.8 U	4.5 U	4.3 U	4.4 U	4.4 U	4.9 U	4.9 U	4.4 U	4.3 U	4.8 U
Benzo[a]anthracene	0.029	NE	NE	NE	NA	0.96 U	4.5 U	4.3 U 1.1 U	4.4 U	4.4 U	0.98 U	0.98 U	4.4 U 1.1 U	4.3 U	0.96 U
Denzolajantniacene	0.029	INE		INE	NA	0.90 0	1.10	1.10	1.10	1.10	0.90 0	0.90 0	1.10	1.10	0.90 0

Table 4-4 Groundwater Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

Analyte ¹	USEPA Residential RSL ² (µg/L)	USEPA MCL ² (µg/L)	MDE Interim Residential Cleanup Standards ³ (µg/L)	Background UTL Groundwater Total ⁴ (μg/L)	ST14-MW35 December 2012 (μg/L)	SWMU56- TMW01-GW05	SWMU56- TMW01-GW06 (DUP)		SWMU56- TMW03-GW09	SWMU56- TMW04-GW10	SWMU56- TMW05-GW04	SWMU56- TMW06-GW01	SWMU56- TMW07-GW03	SWMU56- TMW08-GW02	SWMU56- TMW09-GW07
Benzo[a]pyrene	0.029	0.2	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Benzo[b]fluoranthene	0.029	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Benzo[k]fluoranthene	0.29	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Bis(2-chloroethyl)ether	0.012	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Dibenz(a,h)anthracene	0.0029	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Diethyl phthalate	11000	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.53 J	1.1 U	1.1 U	0.96 U
Hexachlorobenzene	0.042	1	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Hexachlorobutadiene	0.26	NE	NE	NE	NA	9.6 U	11 U	11 U	11 U	11 U	9.8 U	9.8 U	11 U	11 U	9.6 U
Hexachloroethane	0.79	NE	NE	NE	NA	3.8 U	4.5 U	4.3 U	4.4 U	4.4 U	3.9 U	3.9 U	4.4 U	4.3 U	3.8 U
Indeno[1,2,3-cd]pyrene	0.029	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Naphthalene	0.14	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Nitrobenzene	0.12	NE	NE	NE	NA	1.9 U	2.3 U	2.1 U	2.2 U	2.2 U	2.0 U	2.0 U	2.2 U	2.2 U	1.9 U
N-Nitrosodimethylamine	0.00042	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
N-Nitrosodi-n-propylamine	0.0093	NE	NE	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Pentachlorophenol	0.035	1	NE	NE	NA	38 U	45 U	43 U	44 U	44 U	39 U	39 U	44 U	43 U	38 U
GRO/DRO by SW-846 Method	I 8015C														
Diesel Range Organics	NE	NE	47	NE	NA	98 U	99 U	110 U	76 J	110 U	95 U	100 U	110 U	95 U	100 U
Gasoline Range Organics	NE	NE	47	NE	NA	25 UJ	25 UJ	25 UJ	20 U	83	25 UJ	25 UJ	25 U	20 U	25 UJ
Pesticides by SW-846 Method	d 8081A														
Aldrin	0.004	NE	NE	NE	NA	0.011 U	0.0095 U	0.011 U	0.011 U	0.010 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U
alpha-BHC	0.0062	NE	NE	NE	NA	0.011 U	0.0095 U	0.011 U	0.011 U	0.010 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U
Dieldrin	0.0015	NE	NE	NE	NA	0.011 U	0.0095 U	0.011 U	0.011 U	0.010 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U
Heptachlor	0.0018	0.4	NE	NE	NA	0.011 U	0.0095 U	0.011 U	0.011 U	0.010 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U
Heptachlor epoxide	0.0033	0.2	NE	NE	NA	0.011 U	0.0095 U	0.011 U	0.011 U	0.010 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U
Toxaphene	0.013	3	NE	NE	NA	0.88 UJ	0.76 UJ	0.85 UJ	0.87 UJ	0.82 UJ	0.81 UJ	0.82 UJ	0.84 UJ	0.83 UJ	0.83 UJ
PCBs by SW-846 Method 808	2A														
PCB – 1221	0.004	NE	NE	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1232	0.004	NE	NE	NE	NA	0.44 U	0.38 U	0.43 U	0.43 U	0.45 U	0.40 U	0.41 U	0.42 U	0.42 U	0.42 U
PCB – 1242	0.034	NE	NE	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1248	0.034	NE	NE	NE	NA	0.22 U	0.19 U	0.21 U	0.22 U	0.22 U	0.20 U	0.21 U	0.21 U	0.21 U	0.21 U
PCB – 1254	0.034	NE	NE	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1260	0.034	NE	NE	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
Herbicides by SW-846 Metho	d 8151A														
MCPP	12	NE	NE	NE	NA	100 U	100 U	100 U	100 U	96 U	33 J	96 U	35 J	91 U	100 U

Table 4-4 Groundwater Detections at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Analyte ¹	USEPA Residential RSL ² (µg/L)	USEPA MCL ² (µg/L)	MDE Interim Residential Cleanup Standards ³ (µg/L)	Background UTL Groundwater Total ⁴ (μg/L)	ST14-MW35 December 2012 (μg/L)	SWMU56- TMW01-GW05	SWMU56- TMW01-GW06 (DUP)		SWMU56- TMW03-GW09	SWMU56- TMW04-GW10	SWMU56- TMW05-GW04	SWMU56- TMW06-GW01	SWMU56- TMW07-GW03	SWMU56- TMW08-GW02	SWMU56- TMW09-GW07
Metals by SW-846 6010B and	d 7470A														
Aluminum	16,000	NE	NE	26,900	220 J	160 J	73 J	21,000	220 J	57 J	1,700	480	180 J	660	110 J
Arsenic	0.045	10	NE	NE	0.33 U	1.0 U	1.0 U	21	1.0 U	1.0 U	0.68 J	1.0 U	1.0 U	0.41 J	1.0 U
Barium	2,900	2,000	NE	76.6	160	24	23	75	110	35	210	66	40	19	21
Beryllium	16	4	NE	NE	0.47 U	0.087 J	0.098 J	1.9	0.46 J	0.17 J	0.32 J	0.25 J	0.18 J	0.15 J	0.085 J
Cadmium	6.9	5	NE	2.6	0.45 U	0.25 J	0.26 J	2.4	1.0	0.47 J	0.39 J	0.48 J	0.43 J	0.15 J	0.14 J
Calcium	NE	NE	NE	167,000	58,000	2,400	2,300	4,400	11,000	3,700	7,700	6,300	3,700	1,800	1,600
Chromium (Total)	NE	100	NE	34.3	2.2 J	2.7 J	1.7 J	170	3.4 J	1.0 J	3.1 J	2.0 J	2.6 J	2.8 J	1.6 J
Cobalt	4.7	NE	NE	22.2	1.2 U	1.3	1.3	95	3.6	1.5	13	3.7	2.7	1.0	1.2
Copper	620	1,300	NE	29.1	1.4 U	2.0 U	2.0 U	310	2.0 U	2.0 U	3.8 U	2.2 U	5.2	2.0 U	44
Iron	11,000	NE	NE	8,520	22 U	1,200 J	890 J	110,000	2,400	740	3,500	2,900	1,300	3,100	1,100
Lead	NE	15	NE	9.47	2.6 U	0.22 J	0.50 U	24	0.29 J	0.69 J	0.86 J	0.75 J	0.34 J	0.23 J	2.0 J
Magnesium	NE	NE	NE	16,000	130 J	1,100	1,100	3,300	4,200	1,400	9,100	2,900	1,400	750	990
Manganese	320	NE	NE	159	0.53 J	28	28	280	100	30	390	140	45	19	26
Mercury	0.63	2	NE	NE	0.027 U	0.080 U	0.080 U	0.15 J	0.15 J	0.39	0.065 J	0.25	0.080 U	0.080 U	0.080 U
Molybdenum	78	NE	NE	1.58	3.1 U	0.48 J	0.25 J	45	0.41 J	0.40 U	0.31 J	0.33 J	0.24 J	0.46 J	0.19 J
Nickel	300	NE	NE	20.2	1.3 U	6.8	6.4	150	15	4.0	14	13	26	3.8	4.1
Potassium	NE	NE	NE	18,300	7,900	870 J	870 J	4,100	1,500 J	1,200 J	1,900 J	1,400 J	1,500 J	1,200 J	750 J
Selenium	78	50	NE	2.6	4.9 U	2.0 U	2.0 U	3.0 J	2.0 U	2.0 U	0.99 J	2.0 U	2.0 U	2.0 U	2.0 U
Silver	71	NE	NE	NE	0.93 U	0.10 U	0.10 U	0.36 J	0.10 U						
Sodium	NE	NE	NE	110,000	36,000	6,000	5,800	3,700 J	47,000	9,400	57,000	25,000	7,100	3,800 J	5,500
Thallium	0.16	2	NE	NE	4.9 U	0.10 U	0.10 U	1.5	0.063 J	0.081 J	0.091 J	0.080 J	0.10 U	0.10 U	0.10 U
Vanadium	78	NE	NE	15.9	2.9 J	1.0 U	1.0 U	59	1.0 U	1.0 U	1.5 J	0.77 J	1.0 U	1.2 J	1.0 U
Zinc	4,700	NE	NE	415	7.2 J	20 U	20 U	190	19 J	9.0 J	13 J	25	16 J	20 U	28

Bold values indicate the analyte was detected.

Result exceeds established screening criteria and the Background UTL, if available.

Result exceeds established screening criteria but is less than Background UTL.

Screening criteria is lower than the LOD.

Notes:

¹ All analyte concentrations are reported in μ g/L.

² The Screening Criteria is the USEPA RSL/MCL Summary Table updated November 2012 (USEPA 2012).

³ The Screening Criteria is the MDE Interim Final Cleanup Standards (MDE 2008). The MDE Interim Final Cleanup Standards are to be considered only and not intended to be primary cleanup criteria at CERCLA sites.

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

UJ = The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.

Acronyms:

µg/L = microgram per liter

- AOI = Area of Interest
- DRO = diesel range organics
- GRO = gasoline range organics

Table 4-4 Groundwater Detections at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

	USEPA Residential RSL ²	USEPA MCL ²	MDE Interim Residential Cleanup	Background UTL Groundwater	ST14-MW35 December 2012	SWMU56-	SWMU56- TMW01-GW06	SWMU56-							
Analyte ¹	(µg/L)	(µg/L)	Standards ³ (µg/L)	Total ⁴ (µg/L)	(µg/L)	TMW01-GW05	(DUP)	TMW02-GW08	TMW03-GW09	TMW04-GW10	TMW05-GW04	TMW06-GW01	TMW07-GW03	TMW08-GW02	TMW09-GW07

GW = groundwater

LOQ = limit of quantitation

LOD = limit of detection

MCL = Maximum Contaminant Level

MDE = Maryland Department of the Environment

NA = not analyzed

NE = none established

PAHs = polynuclear aromatic hydrocarbons

PCB = polychlorinated biphenyl

SVOC = semi-volatile organic compound

SWMU = solid waste management unit

RSL = Regional Screening Level

TMW = temporary monitoring well

USEPA = United States Envionmental Protection Agency

UTL = Upper Tolerance Limit

VOC = volatile organic compound

	USEPA Residential	Background UTL Surface Soil ³ (µg/kg)	SWMU56-SB01	SWMU56-SB02	SWMU56-SB03	SWMU56-SB04
Analyte ¹	RSL ² (µg/kg)	(F) (F) (F)	(1-2ft)	(1-2ft)	(1-2ft)	(1-2ft)
Pesticides by SW-84	46 Method 8081A					
delta-BHC	NE	NE	2.5 J	0.51 J	0.73 U	15 U
alpha-Chlordane	NE	15.2	0.54 U	25	16	300
gamma-Chlordane	NE	6.9	0.81 U	28	18	420
4,4'-DDD	2,000	0.97	0.81 U	0.79 U	0.73 U	65
4,4'-DDE	1,400	3.2	0.54 U	2.4 J	0.48 U	27 J
4,4'-DDT	1,700	7.6	0.81 U	2.7 J	0.99 J	41 J
Endosulfan sulfate	NE	0.43	0.54 U	0.52 U	0.48 U	6.7 J
Heptachlor	110	NE	0.54 U	0.52 U	0.47 J	14 J
Heptachlor epoxide	53	1.4	0.81 U	2.7 J	0.56 J	15 U
Herbicides by SW-8	46 Method 8151A				•	•
Herbicides below LOD						
Notoci	•				1	1

Notes:

¹ All analyte concentrations are reported in µg/kg.

² The Screening Criteria is the USEPA RSL Summary Table updated November 2012 (USEPA 2012).

³ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

Acronyms:

µg/kg = microgram per kilogram

AOI = Area of Interest

LOQ = limit of quantitation

LOD = limit of detection

NE = none established

SB = soil

SWMU = solid waste management unit

RSL = Regional Screening Level

USEPA = United States Envionmental Protection Agency

UTL = Upper Tolerance Limit

Table 4-5 B3459 Soil Detections Page 1 of 1

Table 6-1 SLHHRA for Soil at the Civil Engineering Storage Yard AOIPhase I RI Report for SWMU 56Performance-Based RestorationJoint Base Andrews Naval Air Facility WashingtonCamp Springs, Maryland

			Basic Statistics				95% UCL			
Analyte ¹	USEPA Residential RSL ² (µg/kg)	Background UTL Soil Boring ³ (μg/kg)	Number of Samples	Number of samples above RSL and Background UTL	Maximum	Minimum	Mean ⁴	Most conservative EPC⁵ (95% UCL)	Calculation Type	Assessment
PAHs by SW-846 Method 8270-S	MI									
Benzo[a]pyrene	15	3.5	14	2	18	2.2	3.7	10.26	95% Chebyshev (mean, Sd)	EPC is less than screening criteria
Metals by SW-846 Method 6010E	3	-	-			-		-	·	
Barium	15,000,000	53,600	14	1	42,000,000	580	3,900,000	42,436,871	Hall's Bootstrap	EPC exceeds RSL and Background UTL
Result exceeds established screening criteria and the Background UTL.										

Notes:

¹ All analyte concentrations are reported in μ g/kg.

² The Screening Criteria is the USEPA RSL Summary Table updated November 2012 (USEPA 2012).

³ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

⁴ Mean is calculated by taking 1/2 of all non-detected values and dividing by the total number of samples.

⁵ The most conservative EPC is calculated using the ProUCL 4.1 software (USEPA 2010).

Acronyms:

µg/kg = microgram per kilogram

AOI = Area of Interest

EPC = exposure point concentration

PAH = polynuclear aromatic hydrocarbons

RSL = Regional Screening Level

USEPA = United States Environmental Protection Agency

UTL = Upper Tolerance Limit

95% UCL = 95 percent upper confidence level

Table 6-2 SLHHRA for Groundwater at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

			MDE Interim					Basic Statistics			
Analyte ¹	USEPA Residential RSL ² (µg/L)	USEPA MCL ² (µg/L)	Residential Cleanup Standards ³ (µg/L)	Background UTL Groundwater Total ⁴ (µg/L)	ST14-MW35 December 2012 (µg/L)	Number of Samples	Number of samples above RSL and Background UTL	Maximum	Minimum	Mean⁵	Assessment
VOCs by SW-846 Method 826	50B										
Chloroform	0.19	80	NE	NE	0.46 U	9	1	490	0.20 U	55	Exceeds screening criteria
Trichloroethene	0.44	5	NE	NE	12	9	4	45	0.20 U	12	Exceeds screening criteria
PAHs by SW-846 Method 827	70-SIM										
Benzo[b]fluoranthene	0.029	NE	NE	NE	NA	9	1	0.17	0.011 U	0.06	Exceeds screening criteria
Dibenz(a,h)anthracene	0.0029	NE	NE	NE	NA	9	1	0.16	0.010 U	0.022	Exceeds screening criteria
Indeno[1,2,3-cd]pyrene	0.029	NE	NE	NE	NA	9	1	0.17	0.020 U	0.028	Exceeds screening criteria
GRO/DRO by SW-846 Method	d 8015C										
Diesel Range Organics	NE	NE	47	NE	NA	9	1	76	95 U	54	Exceeds screening criteria
Gasoline Range Organics	NE	NE	47	NE	NA	9	1	83	20 U	20	Exceeds screening criteria
Herbicides by SW-846 Metho	d 8151A										
MCPP	12	NE	NE	NE	NA	9	2	35	33	46	Exceeds screening criteria
Metals by SW-846 6010B and	7470A										
Arsenic	0.045	10	NE	NE	0.33 U	9	1	21	0.41	2.8	Exceeds screening criteria
Cobalt	4.7	NE	NE	22.2	1.2 U	9	1	95	1.0	14	Exceeds screening criteria
Iron	11000	NE	NE	8520	22 U	9	1	110,000	740	14,000	Exceeds screening criteria
Lead	NE	15	NE	9.47	2.6 U	9	1	24	0.22	3.3	Exceeds screening criteria
Manganese	320	NE	NE	159	0.53 J	9	1	390	19	120	Exceeds screening criteria
Result exceeds established so	coning critoria and	the Background LI		•			•		•	•	

Result exceeds established screening criteria and the Background UTL. Screening criteria is lower than the analyte laboratory LOD.

Notes:

¹ All analyte concentrations are reported in μ g/L.

² The Screening Criteria is the USEPA RSL/MCL Summary Table updated November 2012 (USEPA 2012).

³ The Screening Criteria is the MDE Interim Final Cleanup Standards (MDE 2008). The MDE Interim Final Cleanup Standards are to be considered only and not intended to be primary cleanup criteria at CERCLA sites.

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

⁵ Mean is calculated by taking 1/2 of all non-detected values and dividing by the total number of samples.

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

Acronyms:

µg/L = microgram per liter

AOI = Area of Interest

DRO = diesel range organics

GRO = gasoline range organics

GW = groundwater

LOQ = limit of quantitation

LOD = limit of detection

MCL = Maximum Contaminant Level

MDE = Maryland Department of the Environment

NA = not analyzed

NE = none established

PAHs = polynuclear aromatic hydrocarbons

SWMU = solid waste management unit RSL = Regional Screening Level

NOE - Regional Screening Level

USEPA = United States Envionmental Protection Agency

UTL = Upper Tolerance Limit

VOC = volatile organic compound

Table 7-1 Soil Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region 3 BTAG Freshwater		USEPA Ecos	SSLs ³ (µg/kg)		Background UTL Soil	SWMU56- TMW01- SO05	SWMU56- TMW01- SO06 (DUP)	SWMU56- TMW01- SO07	SWMU56- TMW02- SO08	SWMU56- TMW02- SO09	SMW56- TMW03- SO11	SMW56- TMW03- SO12	SMW56- TMW04- SO13	SMW56- TMW05- SO14	SMW56- TMW05- SO15	SWMU56- TMW06- SO02	SWMU56- TMW06- SO03	SWMU56- TMW07- SO01	SWMU56- TMW08- SO04	SWMU56- TMW09- SO10
Analyte ¹	Sediment ² (µg/kg)	Plant	Soil Invert.	Mammalian	Avian	Boring⁴ (µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft
VOCs by SW-846 Metho	d 8260B																				
1,3,5-Trimethylbenzene	NE	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.61 J	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
2-Butanone (MEK)	NE	NE	NE	NE	NE	NE	6.9 U	5.0 U	13 J	20 J	5.1 U	4.8 U	5.0 U	4.4 U	6.5 U	5.2 U	7.8 J	6.3 U	7.0 U	5.3 U	6.2 U
Acetone	NE	NE	NE	NE	NE	NE	9.6 J	16 U	96 J	97 J	16 U	15 U	16 U	14 U	21 U	16 U	97	9.9 U	11 U	8.3 U	20 U
Carbon disulfide	0.851	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.44 J	0.87 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.53 J	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
cis-1,2-Dichloroethene	NE	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.76 U	120 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	50	0.99 U	1.1 U	0.83 U	0.98 U
Naphthalene	176	NE	NE	NE	NE	NE	1.1 U	0.78 U	1.3 J	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
Tetrachloroethene	468	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.76 U	1.1 U	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	1.8 J	0.99 U	1.1 U	0.83 U	0.98 U
Toluene	NE	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.76 U	1.2 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	0.78 U	0.99 U	1.1 U	0.83 U	0.98 U
trans-1,2-Dichloroethene	1,050	NE	NE	NE	NE	NE	1.1 U	0.78 U	0.76 U	9.6 J	0.80 U	0.75 U	0.78 U	0.69 U	1.0 U	0.81 U	4.4	0.99 U	1.1 U	0.83 U	0.98 U
Trichloroethene	96.9	NE	NE	NE	NE	NE	0.86 U	0.63 U	0.61 U	0.89 U	0.64 U	0.60 U	0.62 U	0.55 U	0.82 U	0.65 U	34	0.49 J	0.88 U	0.66 U	0.78 U
PAHs by SW-846 Metho	d 8270-SIM																				
Acenaphthene	6.7	NE	29,000	100,000	NE	45.9	0.34 U	0.27 U	2.2 J	0.31 U	0.29 U	0.28 U	0.27 U	0.27 U	0.31 U	0.28 U	0.31 U	0.28 U	0.27 U	0.27 U	0.31 U
Acenaphthylene	5.9	NE	29,000	100,000	NE	8.8	0.84 U	0.68 U	7.7	4.0 J	0.72 U	0.70 U	0.69 U	0.68 U	0.77 U	0.69 U	1.0 J	0.71 U	0.67 U	0.68 U	0.77 U
Anthracene	57.2	NE	29,000	100,000	NE	NE	3.2 U	2.5 U	5.6	3.7 J	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.9 U	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[a]anthracene	108	NE	18,000	1,100	NE	11.2	3.2 U	2.5 U	14	14	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	1.9 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[a]pyrene	150	NE	18,000	1,100	NE	3.5	3.2 U	2.5 U	18	16	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.2 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[b]fluoranthene	27.2 ^b	NE	18,000	1,100	NE	7.6	3.2 U	2.5 U	34	23	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	5.3 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[g,h,i]perylene	170	NE	18,000	1,100	NE	4.8	3.2 U	2.5 U	18	12	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	4.0 J	2.6 U	2.5 U	2.6 U	2.9 U
Benzo[k]fluoranthene	27.2 ^b	NE	18,000	1,100	NE	NE	3.2 U	2.5 U	9.4	7.6	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	1.5 J	2.6 U	2.5 U	2.6 U	2.9 U
Chrysene	166	NE	18,000	1,100	NE	26.6	3.2 U	2.5 U	30	25	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.7 J	2.6 U	2.5 U	2.6 U	2.9 U
Dibenz(a,h)anthracene	33	NE	18,000	1,100	NE	17	3.2 U	2.5 U	3.9 J	3.4 J	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.9 U	2.6 U	2.5 U	2.6 U	2.9 U
Fluoranthene	423	NE	29,000	100,000	NE	22.6	3.2 U	2.5 U	35	23	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.5 J	2.6 U	2.5 U	2.6 U	2.9 U
Fluorene	77.4	NE	29,000	100,000	NE	11.8	0.84 U	0.68 U	5.4 J	4.0 J	0.72 U	0.70 U	0.69 U	0.68 U	0.77 U	0.69 U	0.77 U	0.71 U	0.67 U	0.68 U	0.77 U
Indeno[1,2,3-cd]pyrene	17	NE	18,000	1,100	NE	5.8	3.2 U	2.5 U	17	11	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	3.1 J	2.6 U	2.5 U	2.6 U	2.9 U
Naphthalene	176	NE	29,000	100,000	NE	NE	0.84 U	0.68 U	22	37	0.72 U	0.70 U	0.69 U	0.68 U	0.66 J	0.69 U	1.2 J	0.71 U	0.67 U	0.68 U	0.77 U
Phenanthrene	204	NE	29,000	100,000	NE	9.3	3.2 U	2.5 U	24	28	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	2.1 J	2.6 U	2.5 U	2.6 U	2.9 U
Pyrene	195	NE	18,000	1,100	NE	13.9	3.2 U	2.5 U	42	31	2.7 U	2.6 U	2.6 U	2.5 U	2.9 U	2.6 U	4.0 J	2.6 U	2.5 U	2.6 U	2.9 U
SVOCs by SW-846 Meth	od 8270D						-														
1,2-Dichlorobenzene	16.5	NE	NE	NE	NE	NE	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
2,4-Dimethylphenol	29	NE	NE	NE	NE	NE	160 U	140 U	150 U	150 U	140 U	270 U	140 U	140 U	150 U	140 U	150 U	140 U	140 U	130 U	150 U
2,4-Dinitrotoluene	41.6	NE	NE	NE	NE	NE	160 U	140 U	150 U	150 U	140 U	270 U	140 U	140 U	150 U	140 U	150 U	140 U	140 U	130 U	150 U
2-Chlorophenol	31.2	NE	NE	NE	NE	NE	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
2-Methylnaphthalene	20.2	NE	NE	NE	NE	6.1	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
3,3'-Dichlorobenzidine	127	NE	NE	NE	NE	NE	410 U	360 U	380 U	380 U	350 U	680 U	340 U	340 U	380 U	360 U	380 U	350 U	350 U	340 U	390 U
Acenaphthene	6.7	NE	29,000	100,000	NE	45.9	21 U	19 U	20 U	20 U	18 U	35 U	18 U	18 U	20 U	18 U	20 U	18 U	18 U	18 U	20 U
Acenaphthylene	5.9	NE	29,000	100,000	NE	8.8	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Anthracene	57.2	NE	29,000	100,000	NE	NE	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Benzyl alcohol	NE	NE	NE	NE	NE	NE	41 U	26 J	38 U	42 J	39 J	680 U	340 U	340 U	380 U	360 U	42 J	27 J	35 U	22 J	390 U
Benzo[b]fluoranthene	27.2 ^b	NE	18,000	1,100	NE	7.6	41 U	36 U	44 J	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U

Table 7-1 Soil Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region 3 BTAG Freshwater		USEPA Ecos	SSLs ³ (µg/kg))	Background UTL Soil	SWMU56- TMW01- SO05	SWMU56- TMW01- SO06 (DUP)	SWMU56- TMW01- SO07	SWMU56- TMW02- SO08	SWMU56- TMW02- SO09	SMW56- TMW03- SO11	SMW56- TMW03- SO12	SMW56- TMW04- SO13	SMW56- TMW05- SO14	SMW56- TMW05- SO15	SWMU56- TMW06- SO02	SWMU56- TMW06- SO03	SWMU56- TMW07- SO01	SWMU56- TMW08- SO04	SWMU56- TMW09- SO10
Analyte ¹	Sediment ² (µg/kg)	Plant	Soil Invert.	Mammalian	Avian	Boring⁴ (µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft
Benzo[k]fluoranthene	27.2 ^b	NE	18,000	1,100	NE	NE	82 U	72 U	76 UJ	77 U	71 U	140 U	69 U	69 U	76 U	71 U	77 U	69 U	69 U	68 U	78 U
Chrysene	166	NE	18,000	1,100	NE	26.6	41 U	36 U	38 J	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Dibenz(a,h)anthracene	33	NE	18,000	1,100	NE	17	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Hexachlorobenzene	20	NE	NE	NE	NE	NE	82 U	72 U	76 U	77 U	71 U	140 U	69 U	69 U	76 U	71 U	77 U	69 U	69 U	68 U	78 U
Indeno[1,2,3-cd]pyrene	17	NE	18,000	1,100	NE	5.8	41 U	36 U	38 U	38 U	35 U	68 U	34 U	34 U	38 U	36 U	38 U	35 U	35 U	34 U	39 U
Pentachlorophenol	504	NE	NE	NE	NE	NE	830 U	740 U	780 U	780 U	720 U	1400 U	700 U	700 U	770 U	730 U	780 U	700 U	700 U	700 U	790 U
GRO/DRO by SW-846 M	ethod 8015C					•										•	-				
Diesel Range Organics	NE	NE	NE	NE	NE	NE	960 J	810 J	9,500	4,000 J	1,700 J	4,400	880 J	1,800 J	1,900 J	830 J	4,400	1,100 J	1,600 J	2,000 J	2,900 J
Organics	NE	NE	NE	NE	NE	NE	290 J	260 J	4,900	350 J	420 U	1,500	530 U	510 U	340 J	270 J	270 J	600 U	370 J	410 U	330 J
Pesticides by SW-846 M	lethod 8081A		I				I			I		<u> </u>							<u> </u>		
4,4'-DDD	4.88 ^c	NE	NE	21 ^e	93 ^e	NE	0.86 U	0.72 U	1.8 J	1.7 J	0.74 U	0.73 U	0.74 U	0.73 U	0.77 U	0.74 U	0.79 U	0.75 U	0.73 U	0.72 U	0.78 U
4,4'-DDE	3.16°	NE	NE	21 ^e	93 ^e	2.7	0.58 U	0.48 U	1.2 J	4.7	0.49 U	0.49 U	0.49 U	0.48 U	0.51 U	0.50 U	0.53 U	0.50 U	0.49 U	0.48 U	0.52 U
PCBs by SW-846 Metho	d 8082A			21	55	2.1	<u> </u>														
PCBs below LOD	59.8	NE	NE	NE	NE		ſ	1	1	1	1	1		Ι		1		1	1	1	
Herbicides by SW-846 M	lethod 8151A																				
Herbicides below LOD			1	I				1	1	1	1	1	1	1		1	1	1	1	1	
Dinoseb	0.611	NE	NE	NE	NE	NE	5,700 U	5000 U	5,500 U	5,800 U	5,100 U	5,000 U	5,000 U	4,900 U	5,500 U	5,100 U	6.3 U	5.9 U	5.6 U	5.7 U	5,600 U
		INE		INE			0,1000		0,000 0	0,000 0	0,100 0	0,000 0	0,000 0	.,	0,000 0	0,100 0	0.0 0	0.0 0	0.0 0	0.1 0	0,000 0
Metals by SW-846 Metho			1													1					
Aluminum	NE	NE	NE	NE	NE	27,900,000	4,300,000	5100000	12,000,000	11,000,000	7,000,000	24,000,000		3,600,000		4,100,000			1,800,000	1,600,000	4,800,000
Arsenic	9,800	18,000	NE	46,000	43,000	5,700	370 J	530	2,100	2,400	1,200	2,700	500	840	2,500	600	2,500	410 J	540	2,900	570
Barium	NE	NE	330,000	2,000,000	NE	53,600	10,000	11000	31,000	40,000	11,000	42,000	7,500	7,400	40,000	13,000	42,000,000		580	4,300,000	13000
Beryllium	NE	NE	40,000	21,000	NE	1,060	42 J	94 J	250	240	68 J	270	33 J	50 J	220	43 J	310	53 J	25 J	36 J	83 J
Cadmium	990	32,000	140,000	360	770	39	55 J	97 J	150	140	54 J	170	69 J	53 J	170	58 J	180	65 J	38 J	29 J	81 J
Calcium	NE	NE	NE	NE	NE	945,000	150	150	580	1100	130	46 J	38 J	67 J	320	30 J	480	29 J	57 J	150	20 J
Chromium	43,400	NE	NE	34,000	26,000	31,200	3,700 J	6200 J	13,000	14,000	5,500	21,000	4,100	4,500	22,000	3,200	19,000	4,500	2,400	11,000	3,600
Cobalt	50,000	13,000	NE	230,000	120,000	6,200	200 J	330 J	1,900	1,800	160	1,700	170	200	1,600	110	2,700	160	100	160	250
Copper	31,600	70,000	80,000	49,000	28,000	11,200	1,100 J	1700 J	5,200	3,900	1,400 J	4,300	1,500 J	2,300 J	3,700	2,900	4,100	1,500 J	1,000 J	2,000 J	1,400 J
Iron	20,000,000	NE	NE	NE	NE	22,800,000	1,400,000	1500000	10,000,000	9,100,000	6,400,000	21,000,000	1,800,000	3,100,000	21,000,000	2,300,000	J 16,000,000	1,300,000	3,200,000	14,000,000	1,200,000
Lead	35,800	120,000	1,700,000	56,000	11,000	37,100	1,800 J	3200 J	16,000	12,000	2,400	9,300	1,500	1,900	10,000	1,900	9,800	3,600	1,100	890	1,500
Magnesium	NE	NE	NE	NE	NE	1,100,000	130,000	140000	640,000	800,000	140,000	720,000	92,000	78,000	680,000	68,000	790,000	63,000	42,000	33,000	130,000
Manganese	460,000	220,000	450,000	4,000,000	4,300,000	174,000	3,600 J	5800 J	36,000	39,000	1,100	8,700	1,300	1,800	15,000	1,100	35,000	1,400	940	4,200	1,400
Mercury	180	NE	NE	NE	NE	67	18 U	15 U	21	24	17 U	16 U	16 U	15 U	22	15 U	11 J	15 U	16 U	16 U	16 U
Molybdenum	NE	NE	NE	NE	NE	1420	81 J	100 J	250	310	85 J	230	84 J	160 J	220 J	310 J	330	110 J	97 J	1,000	170 J
Nickel	22,700	38,000	280,000	130,000	210,000	11,300	540 J	920 J	4,300	4,900	500	4,500	610	780	4,200	420	5,400	420	320 J	950	590
Potassium	NE	NE	NE	NE	NE	843,000	240,000 J	330000	330,000	360,000	160,000 J	350,000	110,000 J	92,000 J	400,000	210,000 J	440,000	220,000 J	89,000 J	68,000 J	230,000 J
Selenium	2,000	520	4,100	630	1,200	NE	310 J	480 J	680	850	320 J	680	400 J	420 J	700	470 J	680	310 J	260 J	170 J	420 J
Silver	1,000	560,000	NE	14,000	4,200	NE	71 U	21 J	45 J	31 J	65 U	26 J	59 U	26 J	34 J	57 U	34 J	57 U	60 U	58 U	69 U
Sodium	NE	000,000 NE	NE	NE	4,200 NE	43,400	120,000 U	96000 U	75,000 J	82,000 J	95,000 U	100,000 U	600,000	97,000 U	120,000 J	100,000 U	100,000 U	100,000 U	92,000 U	96,000 U	100,000 L
	NE	NE	NE	NE	NE	332	37 J	65 J	120	150	35 J	100,000 0	26 J	97,000 0 27 J	120,000 J	30 J	210	42 J	92,000 0 47 J	90,000 U	41 J
					INE	332	3/ J	00 J	120	130	33 1	100	20 J	21 J	190	30 J	210	42 J	4/ J	11.5	
Thallium				200.000	7 000	10 000	E 500	0.000	22.000	22.000	6 000	26.000	2 600	3 700	27 000	1 000 1	22.000	6 700	2 000	0.000	6 600
Vanadium Zinc	NE 121,000	NE 160,000	NE 120,000	280,000 79,000	7,800 46,000	40,000 29,200	5,500 1,500 J	9,900 2,400 J	22,000 20,000	22,000 15,000	6,800 1,000 J	36,000 8,200	3,600 1,000 J	3,700 1,300 J	37,000 8,600	4,900 J 750 J	33,000 15,000	6,700 960 J	3,800 580 J	2,600 2,100 J	6,600 1,500 J

Table 7-1 Soil Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

Г																						
		USEPA							SWMU56-													
		Region 3						SWMU56-	TMW01-	SWMU56-	SWMU56-	SWMU56-	SMW56-	SMW56-	SMW56-	SMW56-	SMW56-	SWMU56-	SWMU56-	SWMU56-	SWMU56-	SWMU56-
		BTAG					Background	TMW01-	SO06	TMW01-	TMW02-	TMW02-	TMW03-	TMW03-	TMW04-	TMW05-	TMW05-	TMW06-	TMW06-	TMW07-	TMW08-	TMW09-
		Freshwater		USEPA Eco	SSLs ³ (µg/kg)		UTL Soil	SO05	(DUP)	SO07	SO08	SO09	SO11	SO12	SO13	SO14	SO15	SO02	SO03	SO01	SO04	SO10
		Sediment ²					Boring ⁴															
	Analyte ¹	(µg/kg)	Plant	Soil Invert.	Mammalian	Avian	(µg/kg)	12-14ft	12-14ft	2-4ft	2-4ft	10-12ft	14-16ft	2-4ft	14-16ft	2-4ft	16-18ft	2-4ft	12-14ft	12-14ft	12-14ft	14-16ft

Bold values indicate the analyte was detected.

Result exceeds established screening criteria and the Background UTL, if available.

Result exceeds established screening criteria but is less than Background UTL.

Screening criteria is lower than the analyte laboratory LOD.

Notes:

' All analyte concentrations are reported in μg/kg.

⁻ The Screening Criteria reference is taken from the USEPA Region 3 BTAG Freshwater Sediment Screening Benchmarks Table (USEPA 2006).

[°] USEPA Ecological Soil Screening Levels (EcoSSLs, USEPA 2010).

^{*} The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

"Screening value for m-Xylene.

~ Screening value for Benzo(b+k)fluoranthene

^c The Screening Benchmark for DDT/DDE/DDD (total) is 5.28 µg/L.

^a The Screening Benchmark for Endosulfan I and Endosulfan II (total) is 2.14 µg/L.

"The EcoSSL for 4,4'-DDT and metabolites.

^f The Screening Benchmark for total PCBs.

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

UJ = The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.

Acronyms:

µg/kg = microgram per kilogram AOI = Area of Interest BTAG = Biological Technical Assistance Group DRO = diesel range organics EcoSSLs = Ecological Soil Screening Levels GRO = gasoline range organics LOQ = limit of quantitation LOD = limit of detection NE = none established PAHs = polynuclear aromatic hydrocarbons PCB = polychlorinated biphenyl SO = soil SVOC = semi-volatile organic compound SWMU = solid waste management unit TMW = temporary monitoring well USEPA = United States Envionmental Protection Agency UTL = Upper Tolerance Limit VOC = volatile organic compound

Table 7-2 SLERA Data Summary for Soil at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region		USEPA Eco	SSLs³ (µg/kg)					Basic Statistics			UCL	. 95 %	
Analyte ¹	3 BTAG Freshwater Sediment ² (μg/kg)	Plant	Soil Invert.	Mammalian	Avian	Background UTL Soil Boring⁴ (μg/kg)	Number of Samples	Number of samples above Criteria and Background UTL	Maximum	Minimum	Mean⁵	Most Conservative EPC ⁶ (95% UCL)	Calculation Type	Assessment
VOCs by SW-846 Method 8	3260B				•			1			•	-		
Carbon disulfide	0.851	NE	NE	NE	NE	NE	14	1	0.87	0.44	0.48	0.54	Approximate Gamma UCL	EPC is less than screening criteria
PAHs by SW-846 Method 8	3270-SIM													
Benzo[b]fluoranthene	27.2 ^a	NE	18,000	1,100	NE	7.6	14	1	34	2.5 U	5.5	17.2	Chebyshev (Mean,Sd)	EPC is less than screening criteria
Indeno[1,2,3-cd]pyrene	17	NE	18,000	1,100	NE	5.8	14	1	17	2.5 U	3.3	8.77	Chebyshev (Mean,Sd)	EPC is less than screening criteria
SVOCs by SW-846 Method	8270D													
Benzo[b]fluoranthene	27.2 ^a	NE	18,000	1,100	NE	7.6	14	1	44	34 U	20	21.85	Modified-t	EPC is less than screening criteria
Pesticides by SW-846 Met	hod 8081A													
4,4'-DDE	3.16 ^b	NE	NE	21 ^c	93 ^c	2.7	14	1	4.7	0.48 U	0.64	2.03	Chebyshev (Mean,Sd)	EPC is less than screening criteria
Metals by SW-846 Method	6010B													
Barium	NE	NE	330,000	2,000,000	NE	53,600	14	3	42,000,000	580	3,900,000	42,434,865	Hall's Bootstrap	EPC exceeds Soil Invertebrate EcoSSL, Mamalian EcoSSL, and Background UTL
Selenium	2,000	520	4,100	630	1,200	NE	14	5	850	170	480	573.5	Students-t	EPC exceeds Plant EcoSSL
Result exceeds established	screening criteria ar	d the Backgro	ound UTL.											

Screening criteria is lower than the analyte laboratory LOD.

Notes:

¹ All analyte concentrations are reported in μ g/kg.

² The Screening Criteria reference is taken from the USEPA Region 3 BTAG Freshwater Sediment Screening Benchmarks Table (USEPA 2006).

° USEPA Ecological Soil Screening Levels (EcoSSLs, USEPA 2010).

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

^o Mean is calculated by taking 1/2 of all non-detected values and dividing by the total number of samples.

^o The most conservative EPC is calculated using the ProUCL 4.1 software (USEPA 2010).

^a Screening value for Benzo(b+k)fluoranthene.

^b The Screening Benchmark for DDT/DDE/DDD (total) is 5.28 µg/L.

^c The EcoSSL for 4,4'-DDT and metabolites.

Acronyms:

µg/kg = microgram per kilogram

AOI = Area of Interest

BTAG = Biological Technical Assistance Group

EcoSSLs = Ecological Soil Screening Levels

EPC = exposure point concentration

PAH = polynuclear aromatic hydrocarbons

NE = none established

SVOC = semi-volatile organic compound

SWMU = solid waste management unit

USEPA = United States Environmental Protection Agency

UTL = Upper Tolerance Limit

VOC = volatile organic compound

95% UCL = 95 percent upper confidence level

Table 7-3 Groundwater Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region 3 BTAG Freshwater ² (µg/L)	Background UTL Groundwater Total ³ (μg/L)	ST14-MW35 December 2012 (µg/L)	SWMU56- TMW01-GW05	SWMU56- TMW01-GW06 (DUP)	SWMU56- TMW02-GW08	SWMU56- TMW03-GW09	SWMU56- TMW04-GW10	SWMU56- TMW05-GW04	SWMU56- TMW06-GW01	SWMU56- TMW07-GW03	SWMU56- TMW08-GW02	SWMU56- TMW09-GW07
VOCs by SW-846 Method 8260B													
1,1-Dichloroethane	47	NE	0.16 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.21 J	0.20 U	0.20 U	0.20 U	0.20 U
1,1-Dichloroethene	25	NE	0.14 U	0.20 U	0.20 U	0.20 U	0.20 U	0.17 J	0.53 J	0.30 J	0.20 U J	0.20 U	0.20 U
Chloroform	1.8	NE	0.46 U	1.6 U	1.6 U	1.6 U	1.6 U	490	0.38 J	0.81 J	0.33 J	0.20 U	1.6 U
cis-1,2-Dichloroethene	NE	NE	1.9	1.4	1.6	0.16 J	0.20 U	1.0 U	9.0	4.9	0.20 U	0.20 U	1.1
Trichloroethene	21	NE	12	17	19	3.5	0.20 U	4.2 U	45	29	0.31 J	0.20 U	13
Trichlorofluoromethane	NE	NE	0.29 U	0.80 U	0.80 U	0.80 U	0.80 U	0.93 J	0.80 U				
PAHs by SW-846 Method 8270-SIM													
Anthracene	0.012	NE	NA	0.020 U	0.020 U	0.021 U	0.022 U	0.021 U	0.029 J	0.020 U	0.022 U	0.020 U	0.022 U
Benzo[b]fluoranthene	NE	NE	NA	0.10 UJ	0.099 UJ	0.11 U	0.11 UJ	0.011 U	0.17 J	0.10 U	0.10 U	0.10 U	0.11 U
Benzo[g,h,i]perylene	NE	NE	NA	0.010 U	0.099 UJ	0.11 U	0.011 U	0.011 U	0.15 J	0.010 U	0.011 U	0.010 U	0.11 U
Benzo[k]fluoranthene	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.17 J	0.010 U	0.011 U	0.010 U	0.011 U
Dibenz(a,h)anthracene	NE	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.16 J	0.010 U	0.011 U	0.010 U	0.011 U
Fluoranthene	0.04	NE	NA	0.010 U	0.0099 U	0.011 U	0.092 J	0.11 U	0.14 UJ	0.010 U	0.011 U	0.010 U	0.011 U
Fluorene	3	NE	NA	0.020 U	0.020 U	0.021 U	0.14 J	0.067 J	0.019 U	0.020 U	0.022 U	0.020 U	0.022 U
Indeno[1,2,3-cd]pyrene	NE	NE	NA	0.020 U	0.020 U	0.021 U	0.022 U	0.021 U	0.17 J	0.020 U	0.022 U	0.020 U	0.022 U
Naphthalene	1.1	NE	NA	0.0072 J	0.0086 J	0.0079 J	0.039 J	0.13	0.0075 J	0.021 J	0.0079 J	0.016 J	0.0080 J
Phenanthrene	0.4	NE	NA	0.012 U	0.012 U	0.013 U	0.23 J	0.11	0.095 UJ	0.10 U	0.013 U	0.012 U	0.013 U
Pyrene	0.025	NE	NA	0.010 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.10 UJ	0.010 U	0.011 U	0.010 U	0.011 U
SVOCs by SW-846 Method 8270D													
1,2-Dichlorobenzene	0.7	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
3,3'-Dichlorobenzidine	4.5	NE	NA	9.6 U	11 U	11 U	11 U	11 U	9.8 U	9.8 U	11 U	11 U	9.6 U
Anthracene	0.012	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Benzo[a]anthracene	0.018	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Benzo[a]pyrene	0.015	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Diethyl phthalate	210	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.53 J	1.1 U	1.1 U	0.96 U
Fluoranthene	0.04	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Hexachlorobenzene	0.0003	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Hexachlorobutadiene	1.3	NE	NA	9.6 U	11 U	11 U	11 U	11 U	9.8 U	9.8 U	11 U	11 U	9.6 U
Pentachlorophenol	0.5	NE	NA	38 U	45 U	43 U	44 U	44 U	39 U	39 U	44 U	43 U	38 U
Phenanthrene	0.4	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
Phenol	4	NE	NA	4.8 U	5.7 U	5.3 U	5.5 U	5.5 U	4.9 U	4.9 U	5.5 U	5.4 U	4.8 U
Pyrene	0.025	NE	NA	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	0.98 U	1.1 U	1.1 U	0.96 U
GRO/DRO by SW-846 Method 80150	C												
Diesel Range Organics	NE	NE	NA	98 U	99 U	110 U	76 J	110 U	95 U	100 U	110 U	95 U	100 U
Gasoline Range Organics	NE	NE	NA	25 UJ	25 UJ	25 UJ	20 U	83	25 UJ	25 UJ	25 U	20 U	25 UJ
Pesticides by SW-846 Method 8081	Α												
Pesticides below LOD													

Table 7-3 Groundwater Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

						opinigs, maiyia							
Analyte ¹	USEPA Region 3 BTAG Freshwater ² (µg/L)	Background UTL Groundwater Total ³ (µg/L)	ST14-MW35 December 2012 (µg/L)	SWMU56- TMW01-GW05	SWMU56- TMW01-GW06 (DUP)	SWMU56- TMW02-GW08	SWMU56- TMW03-GW09	SWMU56- TMW04-GW10	SWMU56- TMW05-GW04	SWMU56- TMW06-GW01	SWMU56- TMW07-GW03	SWMU56- TMW08-GW02	SWMU56- TMW09-GW07
PCBs by SW-846 Method 8082	A			-			-				-	-	-
PCB – 1016	0.000074 ^a	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1221	0.000074 ^a	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1232	0.000074 ^a	NE	NA	0.44 U	0.38 U	0.43 U	0.43 U	0.45 U	0.40 U	0.41 U	0.42 U	0.42 U	0.42 U
PCB – 1242	0.000074 ^a	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1248	0.000074 ^a	NE	NA	0.22 U	0.19 U	0.21 U	0.22 U	0.22 U	0.20 U	0.21 U	0.21 U	0.21 U	0.21 U
PCB – 1254	0.000074 ^a	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
PCB – 1260	0.000074 ^a	NE	NA	0.33 U	0.28 U	0.32 U	0.32 U	0.33 U	0.30 U	0.31 U	0.32 U	0.31 U	0.31 U
Herbicides by SW-846 Method	8151A												
Dinoseb	0.05	NE	NA	0.30 U	0.30 U	0.31 U	0.30 U	0.29 U	0.27 U	0.29 U	0.30 UJ	0.27 U	0.31 U
MCPP	NE	NE	NA	100 U	100 U	100 U	100 U	96 U	33 J	96 U	35 J	91 U	100 U
Metals by SW-846 6010B and 3	7470A												
Aluminum	87	26,900	220 J	160 J	73 J	21,000	220 J	57 J	1,700	480	180 J	660	110 J
Arsenic	5	NE	0.33 U	1.0 U	1.0 U	21	1.0 U	1.0 U	0.68 J	1.0 U	1.0 U	0.41 J	1.0 U
Barium	4	76.6	160	24	23	75	110	35	210	66	40	19	21
Beryllium	0.66	NE	0.47 U	0.087 J	0.098 J	1.9	0.46 J	0.17 J	0.32 J	0.25 J	0.18 J	0.15 J	0.085 J
Cadmium	0.25	2.6	0.45 U	0.25 J	0.26 J	2.4	1.0	0.47 J	0.39 J	0.48 J	0.43 J	0.15 J	0.14 J
Calcium	116,000	167,000	58,000	2,400	2300	4,400	11,000	3,700	7,700	6,300	3,700	1,800	1,600
Chromium (Total)	85	34.3	2.2 J	2.7 J	1.7 J	170	3.4 J	1.0 J	3.1 J	2.0 J	2.6 J	2.8 J	1.6 J
Cobalt	23	22.2	1.2 U	1.3	1.3	95	3.6	1.5	13	3.7	2.7	1.0	1.2
Copper	9	29.1	1.4 U	2.0 U	2.0 U	310	2.0 U	2.0 U	3.8 U	2.2 U	5.2	2.0 U	44
Iron	300	8520	22 U	1,200 J	890 J	110,000	2,400	740	3,500	2,900	1,300	3,100	1,100
Lead	2.5	9.47	2.6 U	0.22 J	0.50 U	24	0.29 J	0.69 J	0.86 J	0.75 J	0.34 J	0.23 J	2.0 J
Magnesium	82,000	16,000	130 J	1,100	1100	3,300	4,200	1,400	9,100	2,900	1,400	750	990
Manganese	120	159	0.53 J	28	28	280	100	30	390	140	45	19	26
Mercury	0.026	NE	0.027 U	0.080 U	0.080 U	0.15 J	0.15 J	0.39	0.065 J	0.25	0.080 U	0.080 U	0.080 U
Molybdenum	73	1.58	3.1 U	0.48 J	0.25 J	45	0.41 J	0.40 U	0.31 J	0.33 J	0.24 J	0.46 J	0.19 J
Nickel	52	20.2	1.3 U	6.8	6.4	150	15	4.0	14	13	26	3.8	4.1
Potassium	53,000	18,300	7,900	870 J	870 J	4,100	1,500 J	1,200 J	1,900 J	1,400 J	1,500 J	1,200 J	750 J
Selenium	1	2.6	4.9 U	2.0 U	2.0 U	3.0 J	2.0 U	2.0 U	0.99 J	2.0 U	2.0 U	2.0 U	2.0 U
Silver	3.2	NE	0.93 U	0.10 U	0.10 U	0.36 J	0.10 U						
Sodium	680,000	110,000	36,000	6,000	5800	3,700 J	47,000	9,400	57,000	25,000	7,100	3,800 J	5,500
Thallium	0.8	NE	4.9 U	0.10 U	0.10 U	1.5	0.063 J	0.081 J	0.091 J	0.080 J	0.10 U	0.10 U	0.10 U
Vanadium	20	15.9	2.9 J	1.0 U	1.0 U	59	1.0 U	1.0 U	1.5 J	0.77 J	1.0 U	1.2 J	1.0 U
Zinc	120	415	7.2 J	20 U	20 U	190	19 J	9.0 J	13 J	25	16 J	20 U	28

Bold values indicate the analyte was detected.

Result exceeds established screening criteria and the Background UTL, if available.

Result exceeds established screening criteria but is less than Background UTL.

Screening criteria is lower than the LOD.

Notes:

¹ All analyte concentrations are reported in μ g/L.

² The Screening Criteria Reference is taken from the US EPA Region 3 Freshwater Screening Benchmarks Table dated July 2006.

Table 7-3 Groundwater Ecological Screening at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region 3	Background UTL	ST14-MW35		SWMU56-								
	BTAG Freshwater ²	Groundwater Total ³	December 2012	SWMU56-	TMW01-GW06	SWMU56-							
Analyte ¹	(µg/L)	(µg/L)	(µg/L)	TMW01-GW05	(DUP)	TMW02-GW08	TMW03-GW09	TMW04-GW10	TMW05-GW04	TMW06-GW01	TMW07-GW03	TMW08-GW02	TMW09-GW07

³ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

^a The Screening Benchmark for total PCBs.

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

UJ = The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.

Acronyms:

 μ g/L = microgram per liter AOI = Area of Interest BTAG = Biological Technical Assistance Group DRO = diesel range organics GRO = gasoline range organics GW = groundwater LOQ = limit of quantitation LOD = limit of detection NA = not analyzed NE = none established PAHs = polynuclear aromatic hydrocarbons PCB = polychlorinated biphenyl SVOC = semi-volatile organic compound SWMU = solid waste management unit TMW = temporary monitoring well USEPA = United States Environmental Protection Agency UTL = Upper Tolerance Limit VOC = volatile organic compound

Table 7-4 SLERA Data Summary for Groundwater at the Civil Engineering Storage Yard AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

						Basic Statistics			
Analyte ¹	USEPA Region 3 BTAG Freshwater ² (µg/L)	Background UTL Groundwater Total ³ (μg/L)	ST14-MW35 December 2012 (μg/L)	Number of Samples	Number of samples above Screening Criteria and Background UTL	Maximum	Minimum	Mean ⁴	Assessment
VOCs by SW-846 Method									
Chloroform	1.8	NE	0.46 U	9	1	490	0.20 U	49.56	EPC exceeds screening criteria
Trichloroethene	21	NE	12	9	2	45	0.20 U	14.11	EPC exceeds screening criteria
PAHs by SW-846 Method	8270-SIM								
Anthracene	0.012	NE	NA	9	1	0.029	0.02	0.0062	EPC exceeds screening criteria
Fluoranthene	0.04	NE	NA	9	1	0.092	0.01	0.020	EPC exceeds screening criteria
Metals by SW-846 6010B a	and 7470A								
Arsenic	5	NE	0.33 U	9	1	21	0.68	2.6	EPC exceeds screening criteria
Barium	4	76.6	160	9	2	210	19	62	EPC exceeds screening criteria
Beryllium	0.66	NE	0.47 U	9	1	1.9	0.046	0.329	EPC exceeds screening criteria
Chromium (Total)	85	34.3	2.2	9	1	170	1.0	19	EPC exceeds screening criteria
Cobalt	23	22.2	1.2 U	9	1	95	1.0	12	EPC exceeds screening criteria
Copper	9	29.1	1.4 U	9	2	310	2	37	EPC exceeds screening criteria
Iron	300	8520	22 U	9	1	110,000	740	12,700	EPC exceeds screening criteria
Lead	2.5	9.47	2.6 U	9	1	24	0.22	3.0	EPC exceeds screening criteria
Manganese	120	159	0.53	9	2	390	19	109	EPC exceeds screening criteria
Mercury	0.026	NE	0.027 U	9	5	0.39	0.065		EPC exceeds screening criteria
Nickel	52	20.2	1.3 U	9	1	150	3.8	24	EPC exceeds screening criteria
Selenium	1	2.6	4.9 U	9	1	3.0	0.99	1.2	EPC exceeds screening criteria
Thallium	0.8	NE	4.9 U	9	1	1.5	0.063		EPC exceeds screening criteria
Vanadium	20	15.9	2.9	9	1	59	0.77	6.5	EPC exceeds screening criteria

Result exceeds established screening criteria and the Background UTL. Notes:

¹ All analyte concentrations are reported in μ g/L.

² The Screening Criteria Reference is taken from the US EPA Region 3 Freshwater Sediment Screening Benchmarks Table dated August 2006.

³ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

⁴ Mean is calculated by taking 1/2 of all non-detected values and dividing by the total number of samples.

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

UJ = The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.

Acronyms:

 μ g/L = microgram per liter

AOI = Area of Interest

BTAG = Biological Technical Assistance Group

LOQ = limit of quantitation

LOD = limit of detection

NA = not applicable

NE = not established

PAHs = polynuclear aromatic hydrocarbons

SWMU = solid waste management unit

USEPA = United States Envionmental Protection Agency

UTL = Upper Tolerance Limit

Table 7-5 Soil Ecological Screening at the Building 3459 AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

	USEPA Region 3 BTAG Freshwater		USEPA Eco	SSLs ³ (µg/kg)		Background UTL	SWMU56-SB01	SWMU56-SB02	SWMU56-SB03	swi
Analyte ¹	Sediment ² (µg/kg)	Plant	Soil Invert.	Mammalian	Avian	Surface Soil ⁴ (µg/kg)	(1-2ft)	(1-2ft)	(1-2ft)	
Pesticides by SW-846 M	lethod 8081A									
delta-BHC	6,400	NE	NE	NE	NE	NE	2.5 J	0.51 J	0.73 U	
alpha-Chlordane	3.24	NE	NE	NE	NE	15.2	0.54 U	25	16	
gamma-Chlordane	3.24	NE	NE	NE	NE	6.9	0.81 U	28	18	
4,4'-DDE	3.16 ^a	NE	NE	21 ^b	93 ^b	3.2	0.54 U	2.4 J	0.48 U	
4,4'-DDT	4.16 ^a	NE	NE	21 ^b	93 ^b	7.6	0.81 U	2.7 J	0.99 J	
Endosulfan sulfate	5.4	NE	NE	NE	NE	0.43	0.54 U	0.52 U	0.48 U	
Heptachlor	68	NE	NE	NE	NE	NE	0.54 U	0.52 U	0.47 J	
Heptachlor epoxide	2.47	NE	NE	NE	NE	1.4	0.81 U	2.7 J	0.56 J	
Herbicides by SW-846 N	lethod 8151A					•	-			•
Herbicides below LOD										
Bald values indicate the				· · · · · · · · · · · · · · · · · · ·			•	-	•	•

Bold values indicate the analyte was detected.

Result exceeds established screening criteria and the Background UTL.

Notes:

¹ All analyte concentrations are reported in μ g/kg.

² The Screening Criteria reference is taken from the USEPA Region 3 BTAG Freshwater Sediment Screening Benchmarks Table (USEPA 2006).

³USEPA Ecological Soil Screening Levels (EcoSSLs, USEPA 2010).

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

^aThe Screening Benchmark for DDT/DDE/DDD (total) is 5.28 µg/L.

^bThe EcoSSL for 4,4'-DDT and metabolites.

Qualifiers:

J = The reported positive result is considered estimated because the result is less than the LOQ or because certain quality control criteria were not met.

U = The analyte was not detected and is reported as less than the LOD or as defined by the client.

Acronyms:

μg/kg = microgram per kilogramAOI = Area of InterestBTAG = Biological Technical Assistance GroupEcoSSLs = Ecological Soil Screening LevelsLOQ = limit of quantitationLOD = limit of detectionNE = none establishedSB = soilSWMU = solid waste management unitUSEPA = United States Envionmental Protection AgencyUTL = Upper Tolerance Limit

WMU56-SB04
(1-2ft)
15 U
300
420
27 J
41 J
6.7 J
14 J
15 U

Table 7-6 SLERA Data Summary for Soil at the Building 3459 AOI Phase I RI Report for SWMU 56 Performance-Based Restoration Joint Base Andrews Naval Air Facility Washington Camp Springs, Maryland

			USEPA Eco	SSLs³ (µg/kg)					Basic Statistics			
Analyte ¹	USEPA Region 3 BTAG Freshwater Sediment ² (µg/kg)		Soil Invert.	Mammalian	Avian	Background UTL Surface Soil ⁴ (µg/kg)	Number of Samples	Number of samples above Screening Criteria and Background UTL	Maximum	Minimum	Mean⁵	Assessment
Pesticides by SW-84	46 Method 8081A			-	-		-	- -			-	
alpha-Chlordane	3.24	NE	NE	NE	NE	15.2	4	3	300	0.54	85	EPC exceeds screening criteria
gamma-Chlordane	3.24	NE	NE	NE	NE	6.9	4	3	420	0.81	117	EPC exceeds screening criteria
4,4'-DDE	3.16 ^ª	NE	NE	21°	93°	3.2	4	1	27	0.48	7.5	EPC exceeds screening criteria
4,4'-DDT	4.16 ^ª	NE	NE	21°	93°	7.6	4	1	41	0.81	16	EPC exceeds screening criteria
Endosulfan sulfate	5.4	NE	NE	NE	NE	0.43	4	1	6.7	0.48	1.9	EPC exceeds screening criteria
leptachlor epoxide	2.47	NE	NE	NE	NE	1.4	4	1	2.7	0.56	4.7	EPC exceeds screening criteria

Notes:

¹ All analyte concentrations are reported in μ g/kg.

² The Screening Criteria reference is taken from the USEPA Region 3 BTAG Freshwater Sediment Screening Benchmarks Table (USEPA 2006).

³ USEPA Ecological Soil Screening Levels (EcoSSLs, USEPA 2010).

⁴ The Background UTL is from the Basewide Background Study Report March 2004 (CH2M Hill 2004).

^o Mean is calculated by taking 1/2 of all non-detected values and dividing by the total number of samples.

^aThe Screening Benchmark for DDT/DDE/DDD (total) is 5.28 µg/L.

^DThe EcoSSL for 4,4'-DDT and metabolites.

Acronyms:

µg/kg = microgram per kilogram

AOI = Area of Interest

BTAG = Biological Technical Assistance Group

EcoSSLs = Ecological Soil Screening Levels

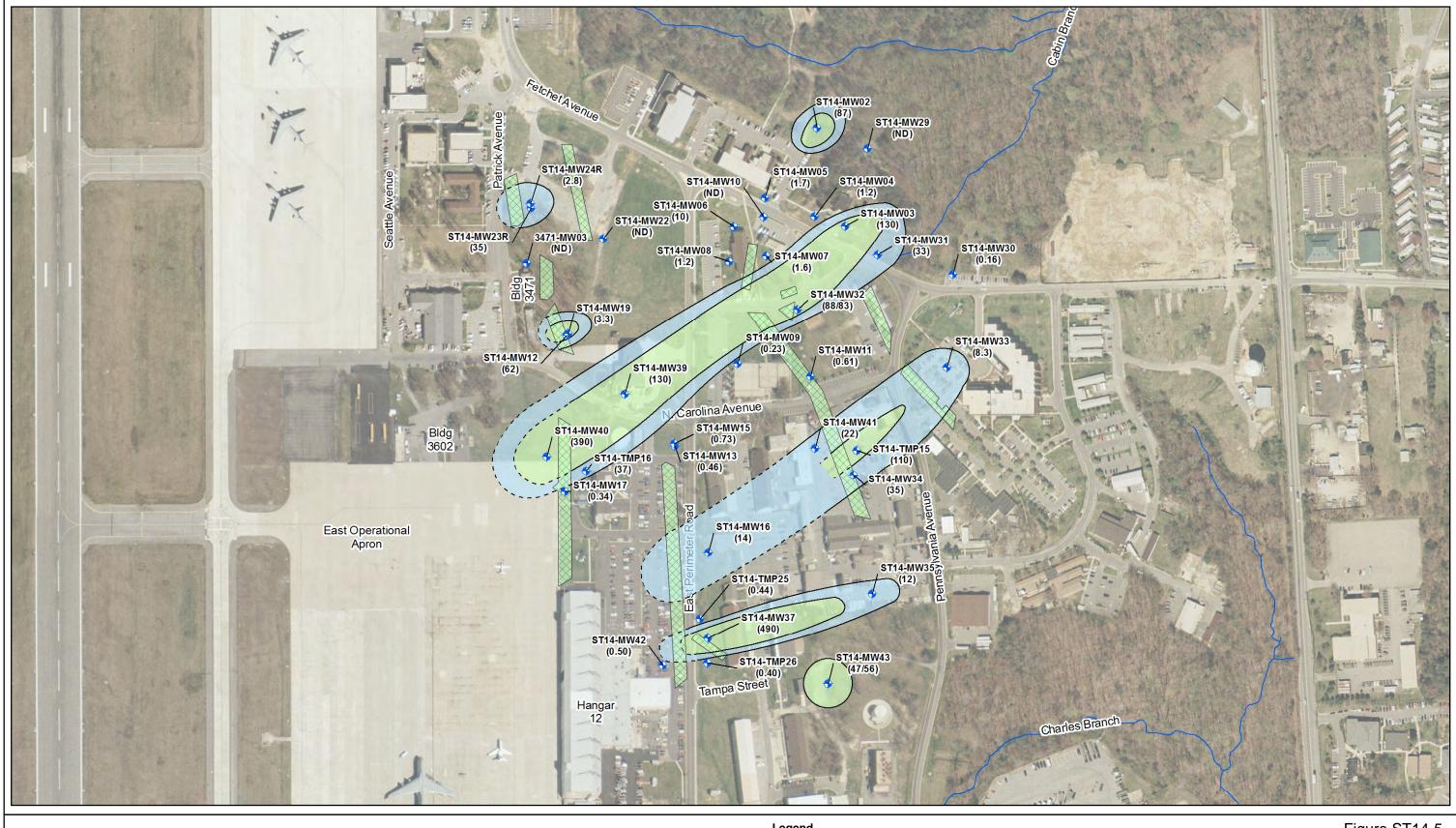
EPC = exposure point concentration

PAH = polynuclear aromatic hydrocarbons

NE = none established

SVOC = semi-volatile organic compound

SWMU = solid waste management unit


USEPA = United States Environmental Protection Agency

UTL = Upper Tolerance Limit

VOC = volatile organic compound

95% UCL = 95 percent upper confidence level

Appendix A ST-14 TCE Plume Map

Note: TCE = trichloroethene ND = Not Detected Wells with more than one result include a sample and a duplicate. Results are in ug/L (microgram per liter).

Prepared/Date: MJW 03/15/13 Checked/Date: SWR 03/15/13

Legend

Monitoring Well Location

(490) TCE Concentration

TCE Concentration 5 to 50 ug/L

TCE Concentation 50 to 500 ug/L

Sodium Lactate Injection Area

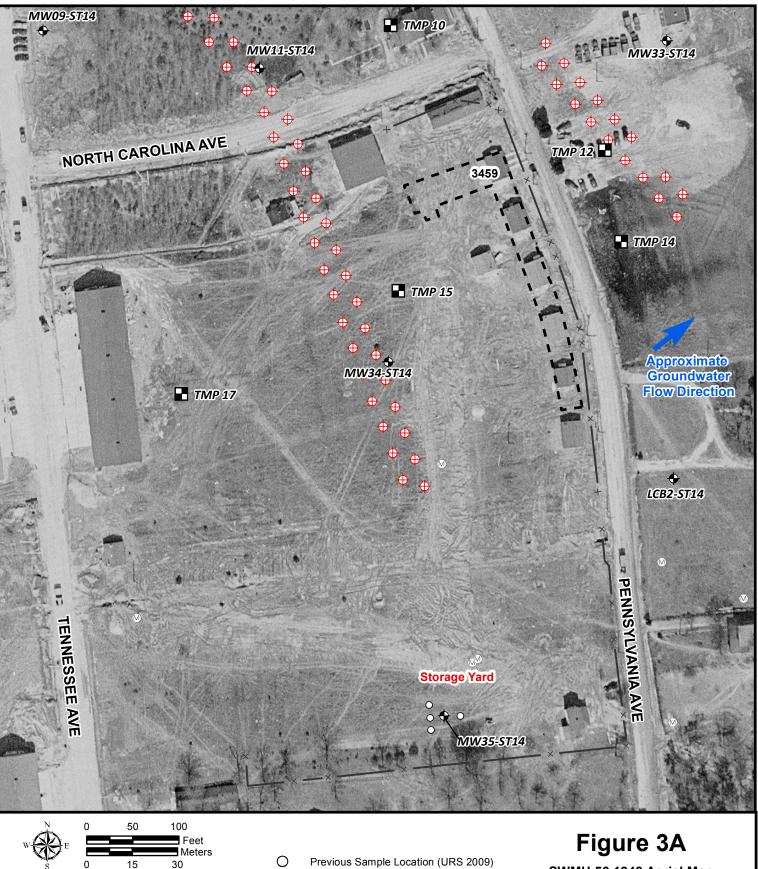

tal/GIS/MapDocuments/ST-14/ST14_Contamination_Plumes_2012_11x17LS.mxd PDF: P:/Projects/Andrews PBR-9101110002/ST-14/4.0_Deliverables/4.1_Reports/2012 RA-O rpt/Figures/SFigure ST14-8 Benzene Plume.pdf 3/15/2013 12:43 PM michael.washburn Document: P:\Projects\Andrews AFB Enviro

Figure ST14-5 Interpreted TCE Plume, November 2012

> 2012 Site ST-14 RA-O Report Joint Base Andrews, Maryland amec

Appendix B

Historical Aerial Images

Monitoring Well Location

Injection Well for ST-14

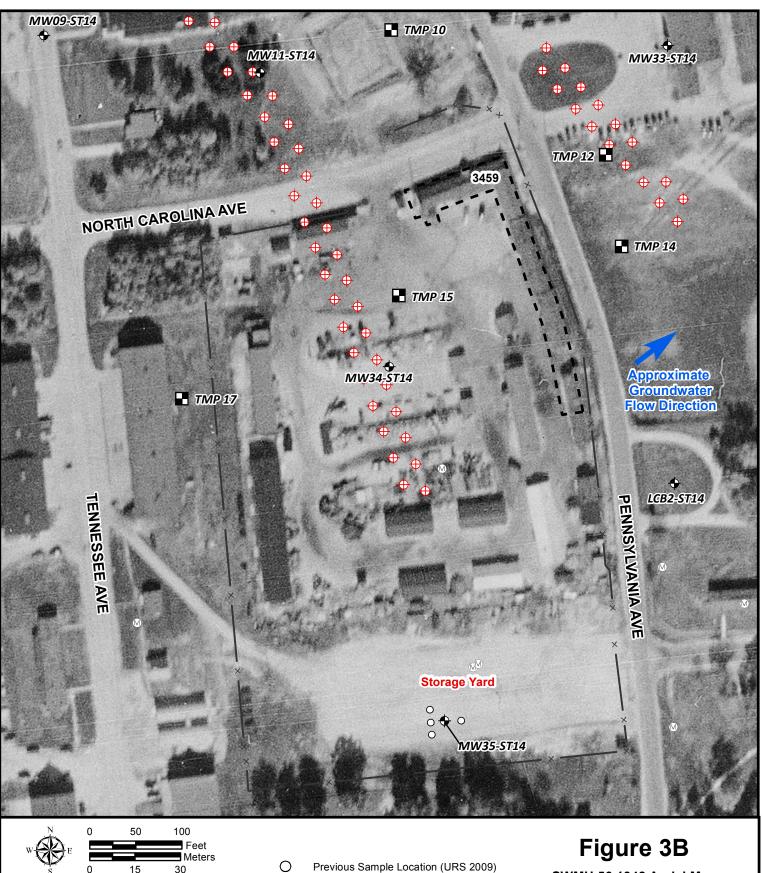
Former Building 3459

(Demolished 1994)

Existing Fence

Temporary Monitoring Point for ST-14

Φ


SWMU 56 1943 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

MARYLAND

Joint Base Andrews

Monitoring Well Location

Injection Well for ST-14

Former Building 3459

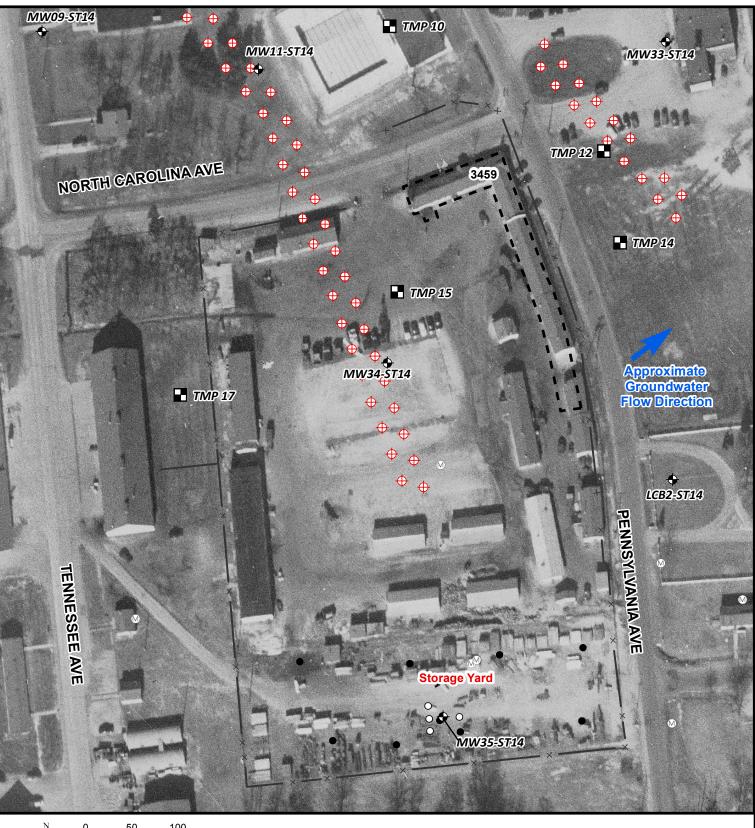
(Demolished 1994)

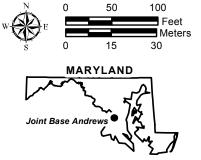
Existing Fence

Temporary Monitoring Point for ST-14

 \oplus

SWMU 56 1948 Aerial Map Joint Base Andrews Camp Springs, Maryland

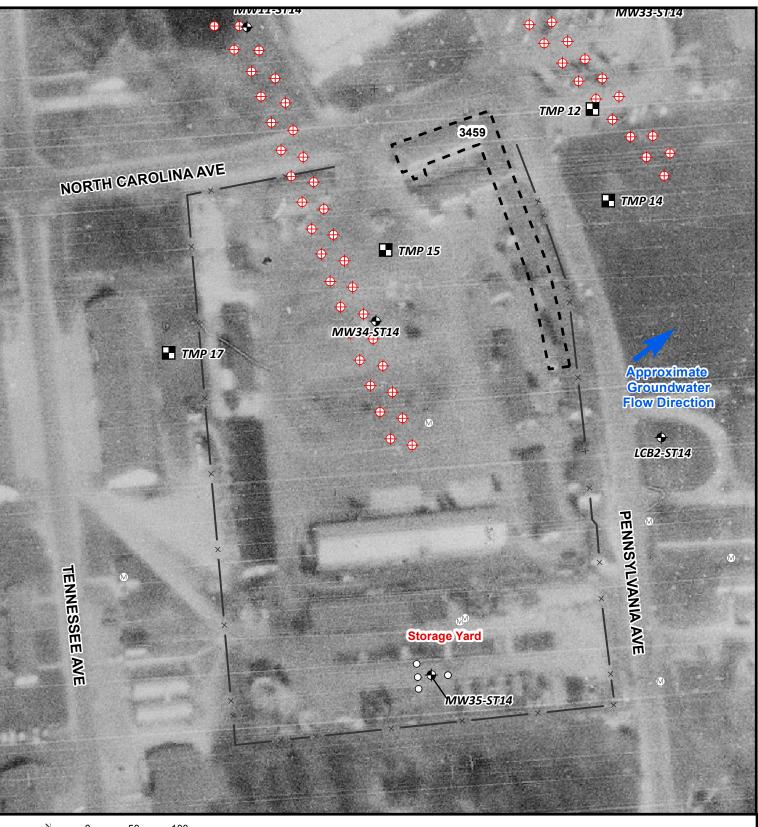

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

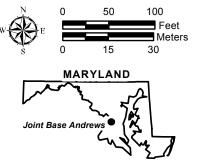

15

MARYLAND

Joint Base Andrews

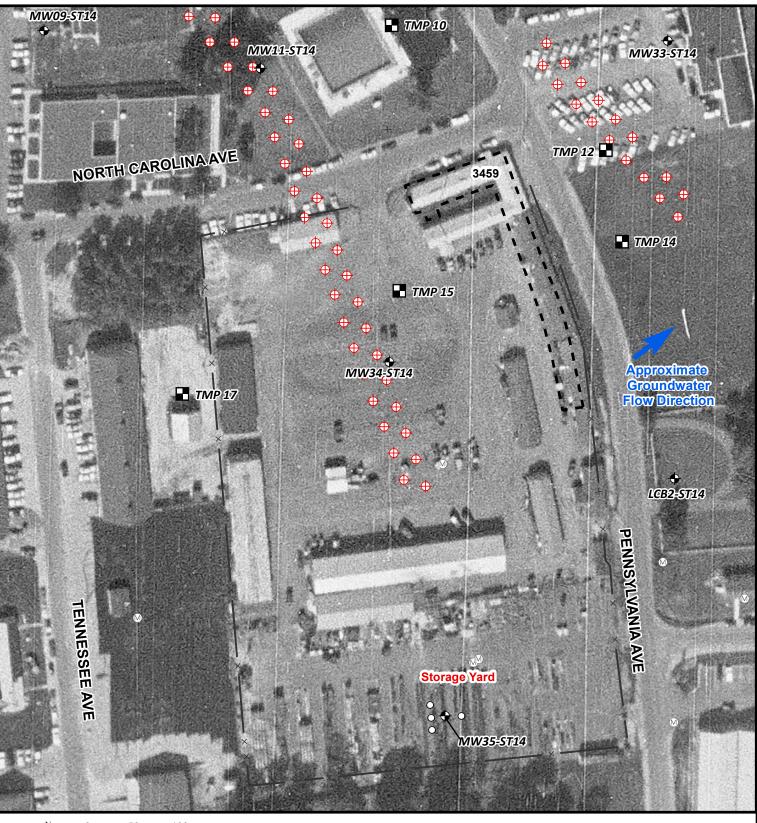
30

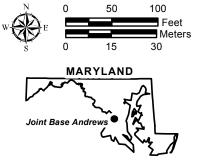

(Demolished 1994)


Figure 3C

SWMU 56 1950 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

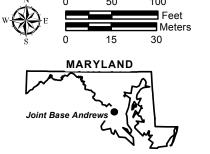

 Previous Sample Location (URS 2009)
 Monitoring Well Location
 Injection Well for ST-14
 Temporary Monitoring Point for ST-14
 Existing Fence
 Former Building 3459 (Demolished 1994)


Figure 3D

SWMU 56 1955 Aerial Map Joint Base Andrews Camp Springs, Maryland

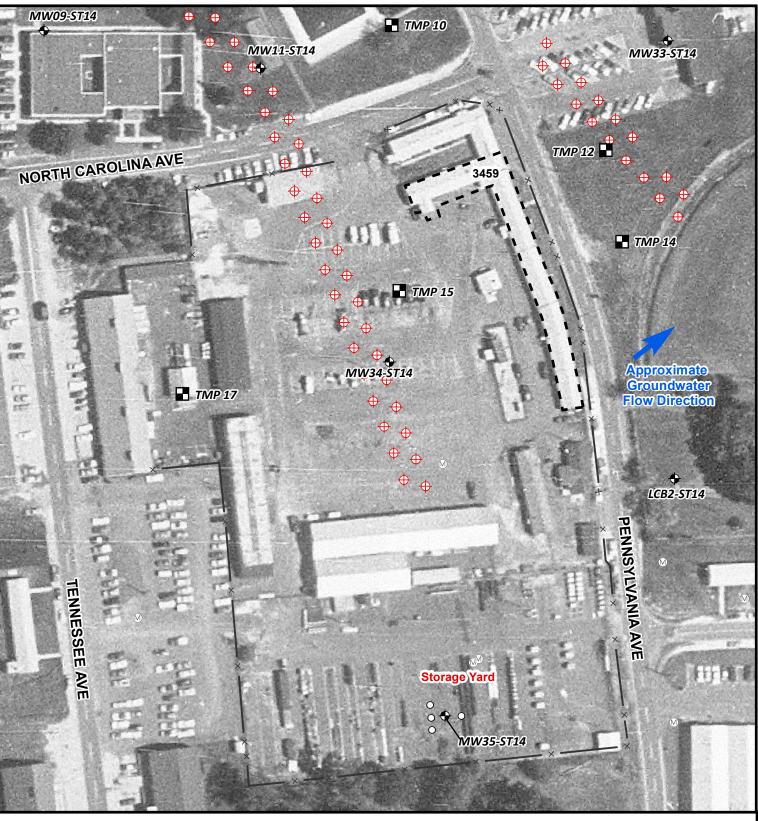
Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

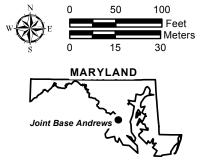
- Previous Sample Location (URS 2009)
 Monitoring Well Location
 Injection Well for ST-14
 Temporary Monitoring Point for ST-14
 Existing Fence
 Former Building 3459
 - (Demolished 1994)


Figure 3E

SWMU 56 1964 Aerial Map Joint Base Andrews Camp Springs, Maryland

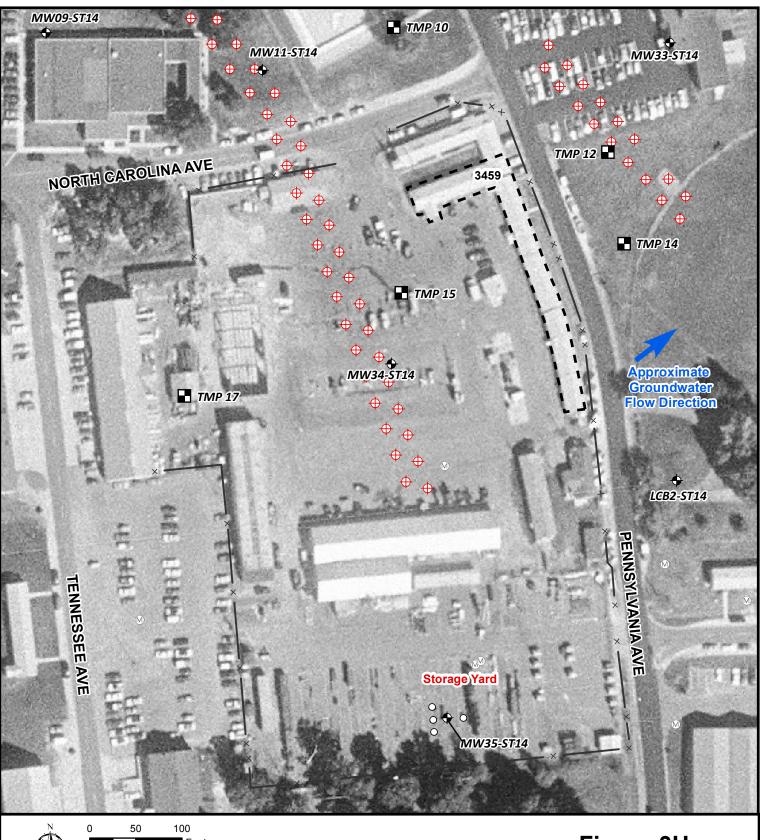
Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

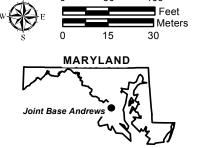

(Demolished 1994)


Figure 3F

SWMU 56 1968 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet


- Previous Sample Location (URS 2009)
 Monitoring Well Location
 Injection Well for ST-14
 Temporary Monitoring Point for ST-14
 Existing Fence
 Former Building 3459
 - (Demolished 1994)

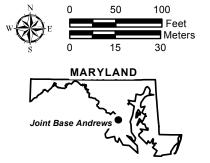

Figure 3G

SWMU 56 1971 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

Previous Sample Location (URS 2009)
 Monitoring Well Location
 Injection Well for ST-14
 Temporary Monitoring Point for ST-14
 Existing Fence

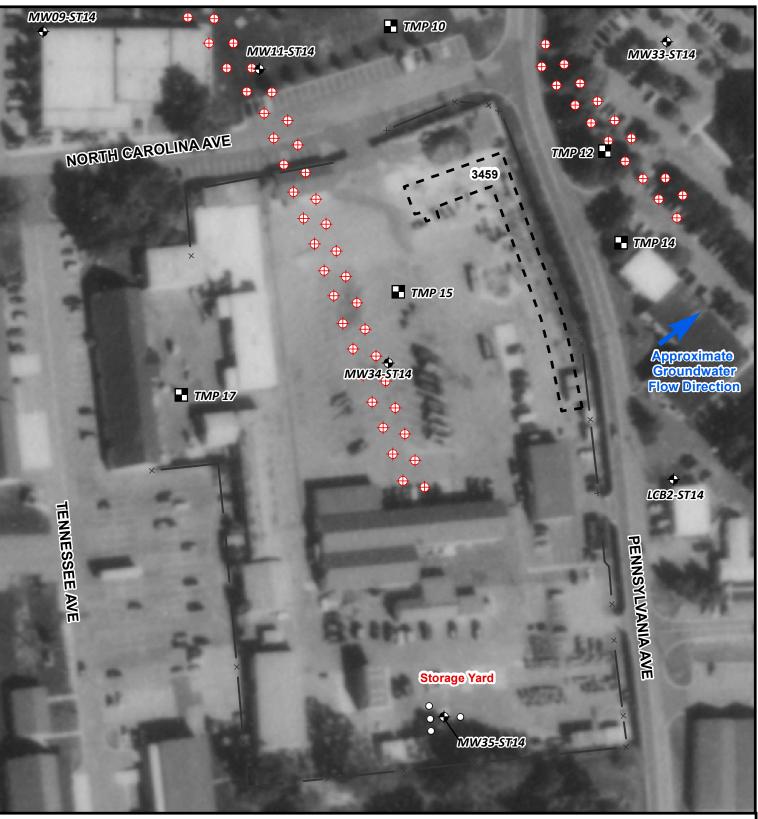

Former Building 3459 (Demolished 1994)

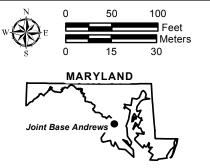

Figure 3H

SWMU 56 1974 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

Former Building 3459


(Demolished 1994)


Figure 3I

SWMU 56 1982 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

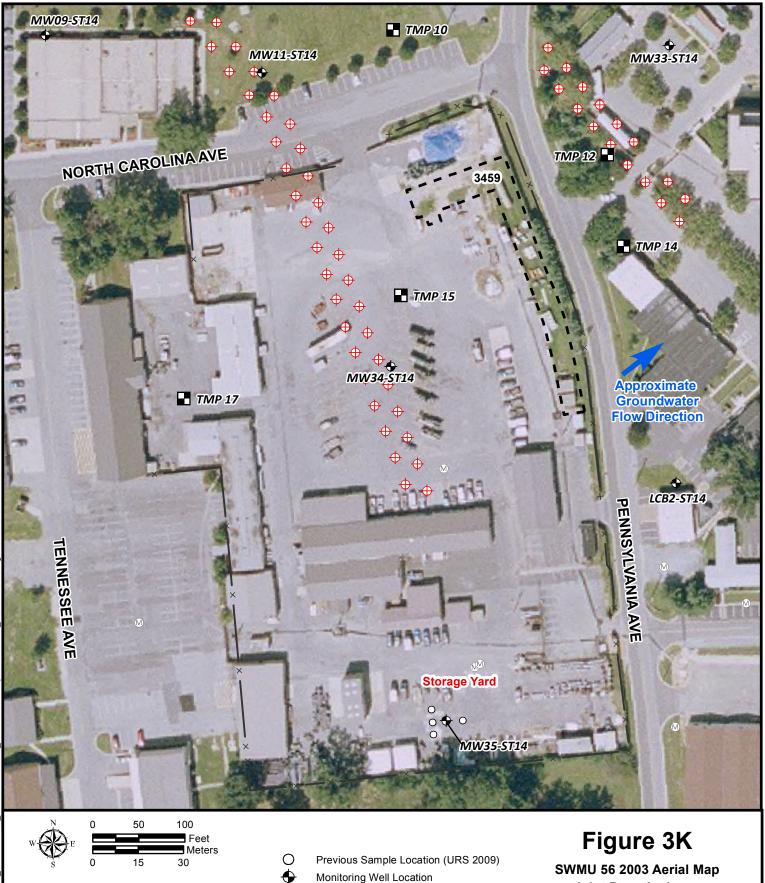
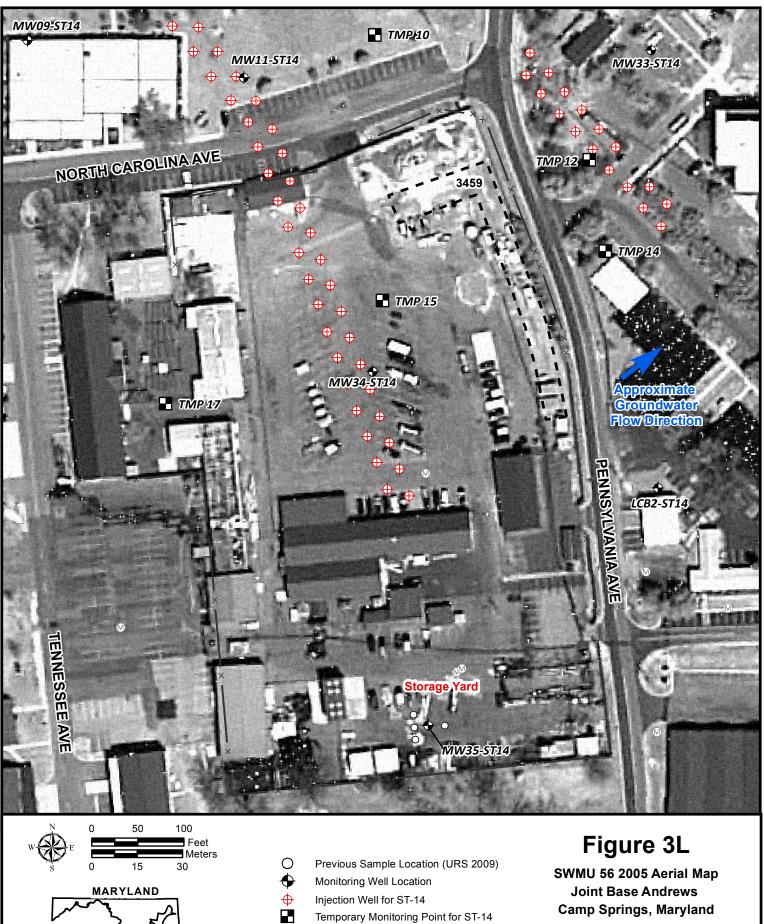

(Demolished 1994)

Figure 3J

SWMU 56 2000 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

MARYLAND Joint Base Andrews


Previous Sample Location (URS 2009)
 Monitoring Well Location
 Injection Well for ST-14
 Temporary Monitoring Point for ST-14
 Existing Fence
 Former Building 3459

(Demolished 1994)

SWMU 56 2003 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

Existing Fence

Former Building 3459

(Demolished 1994)

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

Joint Base Andrews

Previous Sample Location (URS 2009)

Temporary Monitoring Point for ST-14

Monitoring Well Location

Injection Well for ST-14

Former Building 3459

(Demolished 1994)

Existing Fence

SWMU 56 2007 Aerial Map Joint Base Andrews Camp Springs, Maryland

Map Projection: NAD_1983_StatePlane_Maryland_FIPS_1900_Feet

15

MARYLAND

Joint Base Andrews

30

Ο

•

 \oplus

Appendix C

Field Documentation

- C-1 Soil Boring Logs
- C-2 Soil Sample Collection Forms
- C-3 Groundwater Sampling Forms
- C-4 Investigation-Derived Waste Disposal Documentation (pending)
- C-5 Photo Log

Appendix C-1 Soil Boring Logs

age 1 of 1 OREHOLE NO.	SO	L BORING LOG	N L
SB01 PROJECT NO. / NAME J110202.PA.0 / SWMU56 Phase I RI APPROVED BY DRILLING CONTRACTOR Vironex DRILLING EQUIPMENT / METHOD 6820 Geoprobe / Direct Push Technology LOGGED BY		Joint Base Andrews	T
		Camp Springs, Maryland DRILLER'S NAME Austin Hittinger SIZE / TYPE OF BIT 2 inch / 4 foot Macro-Core	START - FINISH DATE 12/3/12 - 12/3/12
OGGED BY Paul Raymaker LEVATION OF:		SAMPLING METHOD Grab	
EVATION OF: T.)	GROUND SURFACE 271.36	GW SURFACE	GW ELEVATION DATE
pth, bgs	Graphic Log	Visual Description	Analytical 은 편 Headspace Sample 변
12	SAND (SP) trace silt, m	AND GRAVEL //	SB01 0.6

Customer-Focused Environme	ental & Industrial Solutions Fax: 651-29	651-291-0456 1-0099		
Page 1 of 1			N	
BOREHOLE NO.	\neg SOIL	BORING LOG	≜	
SB02 PROJECT NO. / NAME		LOCATION		
J110202.PA.0 / SW APPROVED BY	MU56 Phase I RI	Joint Base Andrews	"	
DRILLING CONTRACTO	R	Camp Springs, Maryland DRILLER'S NAME		
Vironex DRILLING EQUIPMENT	/ METHOD	Austin Hittinger SIZE / TYPE OF BIT	START - FINISH DATE	
6820 Geoprobe / D LOGGED BY	Direct Push Technology	2 inch / 4 foot Macro-Core SAMPLING METHOD	12/3/12 - 12/3/12	
Paul Raymaker ELEVATION OF:	GROUND SURFACE	Grab GW SURFACE	GW ELEVATION DATE	:
(FT.)	272.26			-
Depth, ft bgs	209	/isual Description	Analytical and the sample and the sample and the sample and the same sample and the same sample and the same sample and the sample and the same same sample and the same same sample and the same sample and the same same sample and the same same same sample and the same sample and the same sample and the same same same sample and the same same same sample and the same same same same same same same sam	Headspace Values (ppm)
	moist [Fill]	b), dark yellowish brown, with gravel and organics,	SB02	0.5
	CLAYEY SILT (CL- moist	ML), yellowish brown, with gravel, medium stiff,		0.5

SB03 ROJECT NO. / NAM 110202.PA.0 / S PPROVED BY	E SWMU56 Phase I RI	LOCATION Joint Base Andrews Camp Springs, Maryland	†	
RILLING CONTRAC 'ironex RILLING EQUIPMEI		Camp Springs, Maryland DRILLER'S NAME Austin Hittinger SIZE / TYPE OF BIT	START - FINISH DA	TE
OGGED BY	/ Direct Push Technolog	gy 2 inch / 4 foot Macro-Core SAMPLING METHOD Grab	12/3/12 - 12/3/1	2
Paul Raymaker LEVATION OF: T.)	GROUND SURFACE 272.10	GW SURFACE	GW ELEVATION DA	TE
pth, bgs	Graphic Log	Visual Description	Analytical ما الع Sample للو كما Number ۷۷	Headspac Values (ppm)
1	IIIIIIIIIIII organics, s	, dark yellowish brown, with sand and gravel, trace clay and soft, moist [Fill] Y SAND (SPG), yellowish brown, fine- to medium-grained,	SB03	1.3
2	loose, moi	st	[

SB04 ROJECT NO. / NAME 110202.PA.0 / SV PPROVED BY	VMU56 Phase I RI	LOCATION Joint Base Andrews	T	
RILLING CONTRACTO	/ METHOD	Camp Springs, Maryland DRILLER'S NAME Austin Hittinger SIZE / TYPE OF BIT	START - FINISH	
OGGED BY	Direct Push Technology	2 inch / 4 foot Macro-Core SAMPLING METHOD Grab	12/3/12 - 12/3	5/12
aul Raymaker _EVATION OF: T.)	GROUND SURFACE 272.82	GW SURFACE	GW ELEVATION	DATE
pth, ogs	Graphic Log	Visual Description	Analytical Sample Komple Kompl	Headspac Values (ppm)
1_	organics loose	SM), dark yellowish brown, fine-grained, wiht gravel and e, moist [Fill] (CLS), yellowish brown, with gravel, medium stiff, moist	SB04	0.7

BOREHOLE LOCATION SKETCH MAP

J110202.PA.0 / SWMU56 Phase I RI APPROVED BY			Joint Base Andrews				
-			Camp Springs, Maryland DRILLER'S NAME		_		
DRILLING CONTRACT /ironex	OR		Austin Hittinger				
DRILLING EQUIPMEN			SIZE / TYPE OF BIT		START - FINI		
6820 Geoprobe /	Direct Push	lechnology	2 inch / 4 foot Macro-Core SAMPLING METHOD		12/6/12 - 1	2/6/12	
Paul Raymaker	GROUND SL		Grab				
ELEVATION OF: FT.)	269.66	JRFACE	GW SURFACE 254.16		GW ELEVAT 12/6/12	ION DATE	
epth, bgs	Graphic Log	Vis	ual Description		Analytical Sample	Sample	Headspace Values (ppm)
-	XXXXXX	ASPHALT		Γ	Number		(FF)
			vith sand and gravel, medium stiff, moist [Fill]				0.5
					SO07		2.6
			lly, with sand, medium stiff, moist [Shallow				
5		Upland Deposits]	ny, war sana, mealant sun, moist [Shallow				1.7
							0.7
							0.5
10							0.5
							0.0
							0.6
					0005		
					SO05		0.6
15							
$ \nabla$			ray, medium- to coarse-grained, with gravel,				0.5
		medium dense, wet [Int	ermediate Upland Deposits]				
							1.1
	0	GRAVELLY SAND (SPO	G), brownish yellow, medium to coarse-grained,				
	• () •	with silt, medium dense	, wet				0.8
20	$-\rho_{o}$ 0						
	° O O						0.9
	• <u></u> •						
	D O						1.0
			SM), brownish yellow, fine-grained, 0.1 inch				
25			ned sand, medium dense, wet				1.4
							0.7
							ie Ve
							0.6
30							

PROJECT NO. / NAME J110202.PA.0 / SWMU56 Phase I RI		Joint Base Andrew	'S				
APPROVED BY	TOR		Camp Springs, Ma DRILLER'S NAME	ryland	_		
/ironex Drilling Equipmen			Austin Hittinger SIZE / TYPE OF BIT		START - FINI		
6820 Geoprobe / LOGGED BY		Technology	2 inch / 4 foot Mac SAMPLING METHOD	ro-Core	12/6/12 - 1		
Paul Raymaker ELEVATION OF:	GROUND SL	JRFACE	Grab GW SURFACE		GW ELEVATI	ON DATE	
FT.)	270.09		254.09		12/6/12		
epth, bgs	Graphic Log	Vi	sual Description		Analytical Sample Number	Sample Interval	Headspace Values (ppm)
			brown, trace sand and organics,				2.4
		medium stiff, moist [F	ill]				2.4
		1 inch lover of block	prophics and restlets		SO08		4.4
		-1 inch layer of black	organics and footiets				
5	-						4.0
		CLAY (CL), arav. with	sand, trace gravel and organics,	low plasticity.			
		very stiff, moist [Shall	ow Upland Deposits]				3.1
			C), fine-grained, sub-rounded, wi	h sand, moist			
10		[Intermediate Upland	Deposits]				1.4
<u>10</u>		GRAVELLY SAND (S with clay, dense, mois	PG), pale brown, medium- to coa	se-grained,			
	$\circ \bigcirc \circ$	with day, dense, mos	st.		SO09		2.5
	ØO						2.7
							2.7
15							No Recovery
∇			PG), brownish yellow, medium- to				
	0 0 0 0		silt, medium dense, wet				3.3
	00						2.4
20			P-SM), yellow, fine-grained, 0.2 in	ch lenses of			
		white fine-grained sar	id, medium dense, wet				2.4
							10
							1.6
25							2.7
							1.8
							1.5
30		CLAY (CL), dark gree	nish gray, medium plasticity, stiff,	moist [Calvert		V i E]· .

BOREHOLE LOCATION SKETCH MAP

Camp Springs, Maryland ING CONTRACTOR DRILLER'S NAME nex Brody ING EQUIPMENT / METHOD SIZE / TYPE OF BIT Geoprobe / Direct Push Technology 2 inch / 4 foot Macro-Core ISED BY SAMPLING METHOD	PROJECT NO. / NAME J110202.PA.0 / SWMU56 Phase I RI APPROVED BY		LOCATION Joint Base Andrews				
Pex Brody Geoprobe/Direct Push Technology SIZE TYPE OF BIT START -FINISH DATE Ceoprobe/Direct Push Technology 2 inch / 4 foot Macro-Core 127/12 - 127/12 SAMEUN METHOD SAMEUN METHOD SMEUN METHOD Raymaker Grab Grab TION OF: GROUND SURFACE GW ELEVATION DATE 271.25 255.25 GW ELEVATION DATE 100 OF: GROUND SURFACE GW ELEVATION DATE 200 CLAY (CL), yelowish brown, trace and, stiff, low plasticity, moist Mathematical Science 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, moist [Intermediate Upland Deposits] 2.0 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, moist [Intermediate Upland Deposits] 1.5 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, wet 1.5 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, wet 1.5 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, wet 2.1 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, wet 2.1 0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium to coarse grained, dense, wet 2.1 0 GRAVELLY SAND WITH CLAY (SP-SC), grayis		500		Camp Springs, Maryla	nd	_	
Geoprobe / Direct Push Technology 2 Inch / 4 foot Macro-Core 12/7/12 - 12/7/12 Raymaker GROUND SURFACE GROUND SURFACE OW ELEVATION DATE 271.25 255.25 12/7/12 He a ds pace Graphic V is u a l D e s c r i p t i o n Aaraykida See Stress Number Graphic V is u a l D e s c r i p t i o n Aaraykida See Stress 10 ASPHALT CLAY (CL), yellowish brown, trace sand, stiff, low plasticity, moist [Fil] 1.0 1.0 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist SO12 1.7 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 2.0 2.4 - Increased gravel and sand content	Vironex			Brody			
EED BY SAMPLING METHOD Raymaker Grab TION OF: GROUND SURFACE GW SURFACE GW ELEVATION DATE 271.25 255.25 127/12 Graphic V is u al D e s c r i p tion Anatylical Sample Number Signific (opp) Graphic CLAY (CL), yellowish brown, trace sand, stiff, low plasticity, moist [Fii] 1.0 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 2.0 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 2.0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium- to coarse-grained, dense, moist [intermediate Upland Deposits] 2.1			ochnology		oro		
271.25 255.25 1277/12 Graphic Log V is u al Description Analytical Solution Image: Comparison of the second solution of the second	LOGGED BY	Direct Fush in	echnology	SAMPLING METHOD	01e	12/1/12 - 1	2////2
271.25 255.25 1277/12 Graphic Log V is u al Description Analytical Solution Image: Comparison of the second solution of the second	Paul Raymaker ELEVATION OF:	GROUND SUF	RFACE			GW FI EVAT	
✓ ASPHALT CLAY (CL), yellowish brown, trace sand, stiff, low plasticity, moist [Fil] 1.0 SO12 1.7 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist (Shalkow Upland Deposits) 2.0 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 2.0 So12 2.1	FT.)						
CLAY (CL), yellowish brown, trace sand, stiff, low plasticity, moist [Fill] 10	epth, t bgs		Vi	sual Description		Sample	Source Headspace Walues Values (ppm)
CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 20 CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 20 Increased gravel and sand content 20 GRAVELLY SAND WITH CLAY (SP-SC), graysh brown, medium- to coarse-grained, dense, moist [Intermediate Upland Deposits] 21 Increased gravel and sand content 1.5 Coarse-grained, dense, moist [Intermediate Upland Deposits] 1.5 Increase of the brownish yellow, wet 1.5 Increase of the brownish yellow, fine-grained, medium 1.4 Increase of the brownish yellow, fine-grained, medium 2.9 Increase of the brownish yellow, fine-grained, medium 2.9 Increase of the brownish yellow, fine-grained, medium 2.1				brown trace cand stiff low plasticity r	noist [Fill]		10
Image: Solid stress of the second stresecond stress of the second stress of the se			CENT (CE), yellowish	שיטוטע איז			
CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist [Shallow Upland Deposits] 2.0 -increased gravel and sand content 2.0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium- to coarse-grained, dense, moist [intermediate Upland Deposits] 2.1						8012	
✓ CLAY (CL), grayish brown, trace gravel, very stiff, low plasticity, moist 2.0 Increased gravel and sand content 2.0 GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium- to coarse-grained, dense, moist [Intermediate Upland Deposits] 2.1						3012	
 CAY (CL), graysh brown, trace gravel, very stim, low plasticity, moist [Shallow Upland Deposits] -increased gravel and sand content -increased gravel and sand content GRAVELLY SAND WITH CLAY (SP-SC), graysh brown, medium- to coarse-grained, dense, moist [Intermediate Upland Deposits] -color change to brownish yellow, wet -color change to brownish yellow, fine-grained, medium dense, wet SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium dense, wet 2.1 2.3 -color change to brownish yellow, fine-grained, medium dense, wet 2.4 2.5 2.6 2.7 2.7 2.8 2.9 2.2 	5						
 ✓ GRAVELLY SAND WITH CLAY (SP-SC), grayish brown, medium- to coarse-grained, dense, moist [Intermediate Upland Deposits] Color change to brownish yellow, wet Sol1 SAND WITH SILT (SP-SM), brownish yellow, tine-grained, medium SAND WITH SILT (SP-SM), brownish yellow, tine-grained, medium 2.1 2.3 2.4 2.0 2.1 2.1 2.3 2.4 2.1 2.3 2.4 2.4 2.0 2.1 2.1 1.5 2.3 2.4 2.4 2.5 2.6 2.7 2.8 2.9 2.2 			CLAY (CL), grayish br [Shallow Upland Depo	rown, trace gravel, very stiff, low plastic isits]			2.0
✓ -increased gravel and sand content 2.0 GRAVELLY SAND WITH CLAY (SP-SC), gravish brown, medium- to coarse-grained, dense, moist [intermediate Upland Deposits] 2.1			[]			
 →increased gravel and sand content GRAVELLY SAND WITH CLAY (SP-SC), gravish brown, medium-to coarse-grained, dense, moist [Intermediate Upland Deposits] Coarse-grained, dense, moist [Intermediate Upland Deposits] 							2.4
GRAVELLY SAND WITH CLAY (SP-SC), gravish brown, medium- to coarse-grained, dense, moist [Intermediate Upland Deposits] 2.1			-increased gravel and	sand content			
Coarse-grained, dense, moist [Intermediate Upland Deposits] - SO11 2.3 - color change to brownish yellow, wet - Color change to brownish yellow, fine-grained, medium dense, wet - 2.1 2.1 1.5 2.3 1.5 2.3 2.1 2.1 2.1 2.1 2.1 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	10						2.0
✓ — SO11 1.5			GRAVELLY SAND W	ITH CLAY (SP-SC), gravish brown, me	dium- to		
✓ - SO11 1.5 -color change to brownish yellow, wet 1.5 1.5 -color change to brownish yellow, fine-grained, medium 1.4 1.4 - - 2.8 2.9 - - - 2.9 2.2				, molot (micomodiato opidna Doposito			2.1
 ✓ Soll -color change to brownish yellow, wet SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium 4 4 4 4 4 4 5 4 4 5 4 5 4 5 5 6 7 7 8 7 7 8 7 7 8 7 7 8 7 9 10 10 11 15 15 16 17 17 18 19 14 1							
 ✓ – SO11 -color change to brownish yellow, wet SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium 4 4							1.5
 Color change to brownish yellow, wet SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium dense, wet 1.5 2.8 2.9 2.2 	15					SO11	
SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium 1.5 dense, wet 1.4	∇					3011	2.5
SAND WITH SILT (SP-SM), brownish yellow, fine-grained, medium dense, wet 1.4 2.8 2.9 2.9			-color change to brow	nish yellow, wet			15
dense, wet 1.4 2.8 2.9 2.2							1.5
				P-SM), brownish yellow, fine-grained, m			
	20						1.4
							2.0
							20
	25						
							28
							26
	30						

PROJECT NO. / NAME J110202.PA.0 / SWMU56 Phase I RI APPROVED BY DRILLING CONTRACTOR Vironex DRILLING EQUIPMENT / METHOD		LOCATION Joint Base Andrews Camp Springs, Maryland DRILLER'S NAME Brody SIZE / TYPE OF BIT		START - FINISH DATE			
6820 Geoprobe / LOGGED BY		Fechnology	2 inch / 4 foot Macro-Core		12/7/12 - 1		
Paul Raymaker ELEVATION OF:	GROUND SL	IRFACE	GW SURFACE		GW ELEVAT		
FT.)	272.54		256.54		12/7/12		
epth, bgs	Graphic Log		sual Description		Analytical Sample Number	Sample Interval	Headspace Values (ppm)
		ASPHALT CLAY (CL), yellowish t plasticity, moist [Fill]	prown, trace sand and organics, stiff, low	~ 			2.0
							1.3
<u>5</u>		-Increasing cond cont	ant				3.6
		-Increasing sand conte	สก				3.4
<u>10</u>		SILTY SAND (SM), gr	ayish brown, medium- to coarse-grained, with				3.4
		gravel, medium dense	moist [Shallow Upland Deposits]				4.4
		SAND WITH SILT (SP	-SM), brownish yellow, medium-grained, with	· · · · · ·			3.6
<u>15</u> ∇		-Wet	, moist [Intermediate Upland Deposits]	 	SO13		3.5
							3.3
<u>20</u>							3.8 5.8
		-Grades to fine-graine	d sand, 0.2 inch white fine-grained sand lenses				5.1
<u>25</u>							4.8
							4.8
 30_							4.8

1110202.PA.0 / S	E SWMU56 Phase	e I RI	LOCATION Joint Base Andrews				
	TOP		Camp Springs, Maryland		_		
ORILLING CONTRAC /ironex			DRILLER'S NAME Brody				
RILLING EQUIPMEN		[echnology	SIZE / TYPE OF BIT 2 inch / 4 foot Macro-Core		START - FIN 12/7/12 - 1		
OGGED BY	Direct i don i	leennology	SAMPLING METHOD			2///12	
Paul Raymaker LEVATION OF:	GROUND SL	JRFACE	Grab GW SURFACE		GW ELEVAT	ION DATE	
- T.)	271.32		253.32		12/7/12		
epth, bgs	Graphic Log	Visua	IDescription		Analytical Sample Number	Sample	Headspace Values (ppm)
		ASPHALT	i, trace sand, gravel, and organics, low	Γ			4.0
		plasticity, moist [Fill]	י, המסט סטויט, שיטיטו, מויט טוצפווונס, וטש				4.0
					8014		E 4
					SO14		5.4
5							
		CLAY (CL), grayish brown, [Shallow Upland Deposits]	trace sand and gravel, low plasticity, moist				4.3
							3.3
10		CLAYEY SAND (SC), light I	prownish gray, fine- to medium-grained,				3.3
10		with gravel, dense, moist [ir	ntermediate Upland Deposits]				
							4.6
							4.8
		-Gravelly					
15							6.3
····					SO15		4.4
		-Wet					
							2.1
20	_	GRAVELLY SAND (SPG), y medium dense, wet	ellow, medium- to coarse-grained, with silt,				
	o. (.). o						4.0
	O D						
	° O O						3.5
	o () o						
25	_[ø_0]						4.5
	° O O						:
	\circ						4.2
	Ø						
	0 O						2.6
30	o (\) °						

PROJECT NO. / NAM J110202.PA.0 / S APPROVED BY	WMU56 Phase I RI		LOCATION Joint Base Andrews					
-	TOD		Camp Springs, Maryland		_			
DRILLING CONTRAC Vironex			Austin Hittinger					
DRILLING EQUIPMEN 6820 Geoprobe	NT / METHOD / Direct Push Techno	ology	SIZE / TYPE OF BIT 2 inch / 4 foot Macro-Core)	START - FIN 12/5/12 - 1			
LOGGED BY			SAMPLING METHOD Grab					
Paul Raymaker ELEVATION OF:	GROUND SURFACE		GW SURFACE		GW ELEVAT	ION DATE		
(FT.)	270.89		254.89		12/5/12	e =	Headspace	
Depth, it bgs	Graphic Log		al Description		Analytical Sample Number	Sample Interval	Values (ppm)	
	ASPH/ SILT (I		e sand and gravel, medium stiff, dry [Fi	II]			3.5	
					SO02		6.9	
	CONTRACTOR SILTY	CLAY (CL-ML). ve	llowish brown, very stiff, moist					
5		(===), 90	, , , ,				2.6	
							3.8	
		/ SILT (MLS), gray	, with clay and trace gravel, very stiff, m	noist				
	[Shallo	w Upland Deposits	5]				5.6	
10								
							4.2	
	SILTY	SAND (SM), red, f	ine- to medium-grained, with gravel, de	nse,				
		Intermediate Uplar	nd Deposits]		SO03		3.3	
15								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						$\square$	No Recovery	
V	mediu	ELLY SAND (SPG) n dense, wet	), yellow, medium- to coarse-grained, wi	ith silt,			2.0	
	• . · · •	,,					3.8	
	ØO						4.1	
20							4.1	
							2.0	
		fina and						
	-Lens	of fine sand					4.3	
25							5.7	
		WITH SILT (SP-SI	M), yellow, fine-grained, 0.2 inch lenses				<u> </u> .	
		ne sand, medium		-			5.4	
							4.3	
30	<u></u>						J	



PROJECT NO. / NAMI <b>J110202.PA.0 / S</b>		e I RI	LOCATION Joint Base Andrews					
APPROVED BY			Camp Springs, Maryland					
DRILLING CONTRAC ⁻ Vironex	TOR		DRILLËR'S NAMË Austin Hittinger					
DRILLING EQUIPMEN 6820 Geoprobe /		Technology	SIZE / TYPE OF BIT         START - FINIS           2 inch / 4 foot Macro-Core         12/4/12 - 12					
LOGGED BY	Direct Fush	rechnology	SAMPLING METHOD		12/4/12 -	12/4/12		
Paul Raymaker ELEVATION OF:	GROUND SL	JRFACE	GW SURFACE		GW ELEVAT	ION DATE		
(FT.)	270.74		256.74		12/4/12			
epth, t bgs	Graphic Log	Visu	alDescription		Analytical Sample Number	Sample Interval	Headspace Values (ppm)	
		- ASPHALT SILTY CLAY (CL-ML), vel	lowish brown, trace sand and gravel and				0.5	
		organics, moderate plastic	city, stiff, moist [Fill]				0.0	
							0.7	
5			d, medium stiff, moist [Shallow Upland				1.0	
		Deposits]	יוויסטוער אוווי, אוסטר נטוומווטאי טעומוע					
							0.4	
		-Becomes gravelly						
							0.7	
10		SILT SAND (SM), gray, m	edium- to coarse-grained, with gravel, den	se,				
		moist [Intermediate Uplan	d Deposits]				0.7	
				· · · · ·				
		SAND (SP), yellowish brow silt, medium dense, moist	wn, medium-grained, with gravel and trace		SO01		1.7	
····· ∇		-Wet						
15						$\bigcirc$	No Recovery	
		-Grades to coarse-grained	d sand					
							2.0	
20						$\bigcirc$	No Recovery	
		-Grades to fine-grained sa	and				0.7	
							2.7	
							No Recovery	
25								
							4.	
							2.6	
30							<u>]</u>	



PROJECT NO. / NAME J110202.PA.0 / SV APPROVED BY		e I RI	Joint Base Andrews				
			Camp Springs, Maryland		_		
DRILLING CONTRACT <b>Vironex</b>			DRILLER'S NAME Austin Hittinger				
DRILLING EQUIPMEN 6820 Geoprobe /		Tochnology	SIZE / TYPE OF BIT 2 inch / 4 foot Macro-Core		START - FINISH DATE 12/5/12 - 12/5/12		
LOGGED BY	Direct Fusit	rechnology	SAMPLING METHOD		12/3/12 -	2/3/12	
Paul Raymaker           ELEVATION OF:         GROUND SURFACE		JRFACE	Grab GW SURFACE		GW ELEVAT		
FT.)	268.86		254.86		12/5/12		
epth, t bgs	Graphic Log	Visu	al Description		Analytical Sample Number	Sample Interval	Headspace Values (ppm)
		ASPHALT CLAY (CL) dark vellowish	n brown, with trace sand and gravel, stiff,	Γ			2.1
		moist [Fill]	,				2.1
							1.5
							1.0
5							0.9
							0.3
		CLAY (CL), grayish brown Upland Deposits]	n, with sand, trace gravel, stiff, moist [Shallow				No recovery
						$\square$	No recovery
	6 (//////	GRAVELLY SAND (SPG)	, yellow, medium-grained, with silt, dense,				0.8
10	`o` (`). o`	moist [Intermediate Uplar	id Deposits]				0.0
 							NI
						$\square$	No recovery
		SAND WITH SILT (SP-SI medium dense, moist	M), yellow, medium-grained, with gravel,		0004		1.2
		,			SO04		1.2
15		-Color change to brownis	h yellow, wet				1.5
							1.5
		-Color change to yellow					1.8
							1.0
							10
20							1.3
		SAND WITH SILT (SP-SI	M), yellow, fine-grained, medium dense, wet				1 1
							1.1
							1.4
							1.7
25							1.1
							1.1
							1.1
							1+1 
							1.0
30							. 1.0 
		CLAY (CL), dark greenish plasticity, moist [Calvert F	n gray, trace sand, medium stiff, moderate Formation]				
			-				



110202.PA.0 / S PPROVED BY	WMU56 Phase	e I RI	Joint Base Andrews				
			Camp Springs, Maryland		_		
RILLING CONTRAC ⁻ <b>ironex</b>			DRILLER'S NAME Austin Hittinger				
RILLING EQUIPMEN 820 Geoprobe /		Technology	SIZE / TYPE OF BIT 2 inch / 4 foot Macro-Core		START - FIN		
OGGED BY	Direct Fusit	recimology	SAMPLING METHOD		12/0/12 - 1	2/0/12	
aul Raymaker EVATION OF:	GROUND SU	JRFACE	GW SURFACE		GW ELEVAT	ION DATE	
Т.)	269.47		253.47		12/6/12		
pth, ogs	Graphic Log	Vi	isual Description		Analytical Sample Number	Sample Interval	Headspace Values (ppm)
		ASPHALT	), grayish brown, with gravel and sand, trace				2.2
			ty, moderately stiff, moist [Fill]				2.3
							3.6
							0.0
5							3.6
		CLAY (CL), brown, m Deposits]	nedium plasticity, soft, moist [Shallow Upland				
		Color obongo to grav	ish brown trace cond				2.9
		-Color change to gray	yish brown, trace sand				
		-Increasing sand cont	tent				2.8
10	—		, grayish brown, fine-grained, trace gravel, dense				
		moist [Intermediate U	Jpland Deposits]				1.0
		-Increasing gravel					
		ind dading grater					2.5
		GRAVELLY SAND (S	SPG), pale brown, fine- to medium-grained, with	<u> </u>			
<u>15</u>	- <u> </u>	clay, dense, moist			SO10		3.6
$\nabla$	J Ø D	-Grades to medium- 1	to coarse-grained sand, wet				
	° O O						3.4
	• () •						
20	σO	-Color change to brow	wnish yellow				3.7
20	- ° O O						
	• <b>O</b> •						3.7
	σD						
	° O O						0.8
25		SAND WITH SILT (S dense, wet	P-SM), brownish yellow, fine-grained, medium				4 5
		,					1.5
							2.0
							2.V
							2.3
30							]. ].

# Appendix C-2

# **Soil Sample Collection Forms**

.

GENERAL INFORMATION	
SITE NAME: SW MU.56 -	JBA PROJECT NO. J1/0202, PA, O
SAMPLE NO. Swiny 56 - TMWO	-SO 05 BORING NO. TMW DI
DATE/TIME COLLECTED: SAMPLE METHOD / DEPTH: SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED: YES	OPOO       PERSONNEL:       fun / fragmach         / 12 - 14       Annach       Annach         SEDIMENT       SLUDGE       Annach         SEDIMENT       SLUDGE       SPLIT SAMPLE NO.         NO       DUPLICATE SAMPLE NO.       NA         NO       DUPLICATE SAMPLE NO.       GO 910
SAMPLE CONTAINERS, PRESERVATIVES, ANA	LYSIS
Sample Container Sx 402 Jur 6x VoAs 40MI Yx 40ml VOA	Preservative     Analysis Requested       Nonp     ORO, PCB, PAH, Pestylich, Metel S       QX MEOH, Y × DF     VOCs       MEOH     G-RO
OVA MEASUREMENTS Background Breathing zone	
Boring Headspace	
SAMPLE DESCRIPTION	<u>i na </u>
DEPTH: <u>12-14</u> DESCRIPTION	Gray gravelly Clay a/Send, med stilly Moist
	· · · · · · · · · · · · · · · · · · ·
GENERAL COMMENTS	boing Advanced directly adjacent to original and from 12-14 ft by to callect additional

GENERAL INFORMATION
SITE NAME: JBA - SWM456 PROJECT NO. J110202. PA. 0
SAMPLE NO. SUMUSCO-TMWOI-SOO7 BORING NO. TMWOI
DATE/TIME COLLECTED:       12/6/12 C 0843       PERSONNEL:       full hup on hup         SAMPLE METHOD / DEPTH:       9 nb / 2 - 4       Aunon a Makiney         SAMPLE MEDIA:       SEDIMENT       SLUDGE         SAMPLE QA SPLIT:       YES       NO         SAMPLE QC DUPLICATE:       YES       NO         MS/MSD REQUESTED:       YES       NO
SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS
Sample ContainerPreservativeAnalysis RequestedU/YVorVorVorSxYom! VorZxVorZxYOm! VorZrMEOH
OVA MEASUREMENTS         Background       0         Breathing zone
SAMPLE DESCRIPTION
DEPTH: 2-4 DESCRIPTION: Dark Gray Clay w/sand and gravel, medun Shift, Mo. 3t
GENERAL COMMENTS Hyre's PID reading, Higher this Average pH (6.58)

1

GENERAL INF	ORMATION						
SITE NAME:	OBA -	Sumus	·(c		PROJECT NO	JILOZOZ. PA.	0
SAMPLE NO.	SWM45	6-TMWOL	-5008		BORING NO	TMWOZ	
DATE/TIME CO SAMPLE METH SAMPLE MEDL SAMPLE QA SP SAMPLE QC DU MS/MSD REQU	IOD / DEPTH: A: PLIT: JPLICATE:	IZ/C/IZ 9 CAG SOIL YES YES YES	P //3) SEDIMENT NO NO NO		PERSONNEL LIT SAMPLE NO. TE SAMPLE NO.		
SAMPLE CONT	FAINERS, PRESE	RVATIVES, ANALY	'SIS				
4 × 400 3× 40m	e Container 52- 01 VOA- 0m / COA		Mone 2×05; 1 2×MEO	x MEOH		Analysis Reque	sted 1 lest, Korb, Mer /3
		_					
OVA MEASURI	EMENTS				<u>, , , , , , , , , , , , , , , , , , , </u>		
Background Breathing zone Boring Headspace		0					
SAMPLE DESC	RIPTION		<u></u>		<u></u>		
DEPTH:	2-4		Yellowsh orgenics,	Brann ( Aprilan	lay in / 4 plasticity	M. Sliff, Man S	<u></u>
	·	- ·					· · · · · · · · · · · · · · · · · · ·
GENERAL COM	MMENTS		<u> </u>	<u>,</u>	<u> </u>	- <u></u>	
		· · · · · · · · · · · · · · · · · · ·		·			
							·

1

j

GENERAL INF	ORMATION						
SITE NAME:	JBA-	-SWM4S	6	PR	OJECT NO.	5/10202,94.0	
SAMPLE NO.	Swmus	6-TAWO	2-5009	В	ORING NO.	TAWOD	_
DATE/TIME CC SAMPLE METH SAMPLE MEDI SAMPLE QA SH SAMPLE QC DU MS/MSD REQU	HOD / DEPTH: A: PLIT: UPLICATE:	h/G/12( Jeab YES YES YES	2 1/47 x 10-12 SEDIMENT NO NO NO NO	SLUDGE	ERSONNEL: AMPLE NO. AMPLE NO.	Amondo Malaney NA	- - - 2
SAMPLE CON	TAINERS, PRESER	RVATIVES, ANALY	'SIS				
4x 407	e Container 2 Jun 3 As 40 ml D ml UDA		None 2 + OE 1x 2 × MEO	MEOH		Analysis Requested DRO, fAH, 100, fast, k.d., VOC3 GKO	Mehols
*i						····	_
							-
OVA MEASUR	EMENTS						-
Background Breathing zone Boring Headspace		0					
SAMPLE DESC	RIPTION	<u></u>	<u></u>	<u> </u>		<u> </u>	
DEPTH:	10-12	_ DESCRIPTION: _	Pole Brown Mast-	Gravelly	<i>M</i> -C	Soud ail clay, Pag	<u>e</u>
	· ·	· -					-
							-
GENERAL CON	MMEN'IS						-
							-
	۰ <u>ـــــ</u> ۰۰۰		" "				-

GENERAL INFORM	ATION		· · · · · · · · · · · · · · · · · · ·		=
	JBA SWM		PROJECT NO.	5110202. PA.D	
SAMPLE NO. $5$	inmuste - TML	103-50/1	BORING NO.	TIMW03	_
DATE/TIME COLLEC SAMPLE METHOD / I SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLIC MS/MSD REQUESTEI	DEPTH: SOIL YES ATE: YES		PERSONNEL:	Pert Bayan to Apranda Matene. NA	- - - -
SAMPLE CONTAINI	ERS, PRESERVATIVES, ANAL	AVSIS	<u></u>		-
Sample Cont 4× 40+ 3× 40m/U 3× 40m/U 3× 40m/U		Preservative None 2×05, 1×ME 2×05, 1×ME	D 	Analysis Requested ROLDCANANE Part A VOCS	lob, part 4
· · · · · · · · · · · · · · · · · · ·					-
OVA MEASUREMEN	VTS		<u></u>		=
Background Breathing zone Boring Headspace	2.3	-			
SAMPLE DESCRIPT	ION				=
DEPTH: 1	<u>4-16</u> description:	Greyish Bran Snd with Clay	srevelly A Dense, mo	Medan to Course	-
GENERAL COMMEN	งาร				-
					-

,

GENERAL INF	ORMATION						<u></u>
SITE NAME:	SWML	156 - J	BA	PRO	JECT NO.	J/10202.	PA.D
SAMPLE NO.	Stome 5	6-JAW C	3-5012	BOI	RING NO.	TAUSO	3
DATE/TIME COI SAMPLE METH SAMPLE MEDIA SAMPLE QA SPI SAMPLE QC DU MS/MSD REQUE	OD / DEPTH: A: LIT: JPLICATE:	12/7/12 Overab Sollo YES YES YES	O 0805 2-4 SEDIMENT NO NO NO	PER SLUDGE SPLIT SAN DUPLICATE SAN		Africada	Maturey
SAMPLE CONT	TAINERS, PRESE	RVATIVES, ANALY	/SIS				
4× 407 3+ 40m1	e Container JEF VOA , I VOA		Preservative None L× OF, 1× J× MEO	MEOH	- - -	Analysis R DKO PCBP VDC5 G & D	At fest to be
······································					- 	······································	······································
OVA MEASURI	EMENTS						
Background Breathing zone Boring Headspace		- <del>1</del> - <del>7</del> - <u>1</u> - <u>7</u>					
SAMPLE DESCI	RIPTION						
DEPTH:	2-4		Yellowish Stiff, p	Brown NJ-St-	Cl-1	h/fre	e Snd,
GENERAL COM						<u></u>	· _ · · · · · · · · · · · · · · · · · ·
······································		······································					······································

ì.

-
-
la, Ne.Hg
=
-

GENERAL INFO	RMATION	······					
SITE NAME:	Sumis	6-51	A		PROJECT NO.	JHORORIP.	6.
SAMPLE NO.	SWMU	56. TMGE	05-5014	<u></u>	BORING NO.	TAWOS	<b></b>
DATE/TIME COL SAMPLE METHO SAMPLE MEDIA: SAMPLE QA SPL SAMPLE QC DUP MS/MSD REQUES	D / DEPTH: IT: PLICATE:	12/7/12. Srab Zsona YES YES YES	(2) (2) 2-4 SEDIMENT NO NO	SLUDGE	PERSONNEL: SAMPLE NO. SAMPLE NO.	Amole 10 NA	mctor Scherrey
Sample ( <u> </u>	Container	VATIVES, ANALY  - - -	/SIS <u>Preserva</u> <u>More</u> 2 × OE, 1 3 × ME	X MEOH	-	Analysis Reque	<u>ssted</u> Postyflerb, Mehls
OVA MEASUREM	MENTS						19 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Background Breathing zone Boring Headspace		0					
SAMPLE DESCR	IPTION						
DEPTH:	2-4	DESCRIPTION:	Yellanish Seevel	Drown and organ	Cley	w/trace Su	~
GENERAL COMM	MENTS	······································		······································	·		

: 1

1

j

GENERAL INFORMATION				
SITE NAME: SUMU	56- JBA		PROJECT NO	JHORAR. PA.O
SAMPLE NO. SUMUS	- TMWOJ-C	01915	BORING NO.	Tuwo5
DATE/TIME COLLECTED: SAMPLE METHOD / DEPTH: SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED:	12/2/12 Q J 16 K /6- SOIL YES YES YES	HZ-TO IZ	30 PERSONNEL SLUDGE SPLIT SAMPLE NO. DUPLICATE SAMPLE NO.	Amuela Matericy NA
SAMPLE CONTAINERS, PRESE	RVATIVES, ANALYSIS			
Sample Container 12x 402 Jers 9 x Yoert VOA 6 x 40m1 VOA		Non XON XDF 34 BX MEOH	MEOH	<u>Analysis Requested</u> DROC DCB, PAU, Best, Hob, Met VOCS G-RO
OVA MEASUREMENTS				
Background Breathing zone Boring Headspace	0			
SAMPLE DESCRIPTION		<u> </u>		
DEPTH: <u>16~18</u>	(	Brangsh Sand, De	Gray Gravelly ye, Moust	Clayey Medun
		<u></u>		
GENERAL COMMENTS	adjacent To	collected	Tor MS/nSD collect addetion	- detion 1 bolis
		مهد 		1

ł

GENERAL INF	ORMATION						
SITE NAME:	JBA-	SWMUS	6	P	ROJECT NO	JHOZOZ.	PA.O
SAMPLE NO.	SUMUS	G-TAWO	6-5002	I	BORING NO.	TMLOC	,
DATE/TIME CO SAMPLE METH SAMPLE MEDI SAMPLE QA SP SAMPLE QC DU MS/MSD REQU	OD / DEPTH: A: LIT: JPLICATE:	12/5/2 SOR YES YES YES	5 X Z-4	<u>/f. 6, y</u> SLUDGE	- AMPLE NO.	fent herry	naleer
SAMPLE CONT	FAINERS, PRESEF	RVATIVES, ANALY	SIS				
$\begin{array}{c} & \underline{Sample} \\ 4x & 4\sigma_{2} \\ 3y & 4\sigma_{2} \\ -3y & 4\sigma_{2} \\ -3y & 4y \\ -3y & 4y \\ -3y & 4y \\ -3y & -3y \\ -3y &$	Container JZC 41 VOA Dml VOA		Preservativ Nene IMBOH, 2 2 MEOH	-		Analysis Re ORO PCB, P VOC3 GRO	<u>quested</u> ##., Pest, the b
OVA MEASUR	EMENTS				<u></u>	<u></u>	
Background Breathing zonc Boring Headspace		6.9 jpm					
SAMPLE DESC	RIPTION					·····	<u></u>
DEPTH:	2-4ft	_ DESCRIPTION: _	Gray to Yella (Iny and gi	sish Bras	n, S.1.	t w trace medium S.	Sand, H. F. K.
GENERAL CON	AMENTS						
	,		·				

GENERAL INF	ORMATION	SUMALL	~				
SITE NAME:	JBA	SWM4 SWAM	54	PROJEC	T NO. 5	HOZOZ	
SAMPLE NO.	SWMUS	6-THWOG	6-S003	BORIN	G NO. TM	woc	
DATE/TIME CC SAMPLE METH SAMPLE MEDI SAMPLE QA SH SAMPLE QC DI MS/MSD REQU	IOD / DEPTH: A: PLIT: UPLICATE:	12/5/12 Grab Soil) YES YES YES YES	2 /155 /12-14 SEDIMENT NO NO NO	PERSON SLUDGE SPLIT SAMPL DUPLICATE SAMPL		1 Rayon k and Malenz A	
SAMPLE CON	TAINERS, PRESE	RVATIVES, ANALY	/SIS				
4× 407 3× 40M	e Container Jer U VOA MI VOA		None 2×05,1s d×MEC	C MEOH		Analysis Request <i>fCb, fAH</i> <i>fC</i> <i>fC</i> <i>fC</i>	Pest, Harl, Mbey
OVA MEASUR	EMENTS						
Background Breathing zone Boring		0.0					
Headspace		3,3					
SAMPLE DESC	CRIPTION				- <u>-</u>	°	
DEPTH:	12-14	DESCRIPTION:	Red (2.5) with scal	184/6) S. Hy Fin 21 pense, Moi	st m	Jun San	
GENERAL COM	MMENTS						
. <u></u>					<u> </u>		

z = 0

•

GENERAL INFORMATION	<u></u>		<u> </u>		=
SITE NAME: JBA	SWMU	156	PROJECT NO	Mozoz, PA. 2	_
SAMPLE NO. SUMUS	6-TMW0	7-5001		Tuw07	~
DATE/TIME COLLECTED: SAMPLE METHOD / DEPTH: 4 SAMPLE MEDIA:	17/4/12 Jrab/12-1	CO850 4' SEDIMENT SLUDGE	PERSONNEL	Anord Meloney	-
SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED:	YES YES YES	NO SI	PLIT SAMPLE NO ATE SAMPLE NO		-
SAMPLE CONTAINERS, PRESER	RVATIVES, ANALY	/SIS			=
4× 402 JErs		Preservative	<b>.</b>	DFO, PCBS PAtts Person	Arb, Meters
3 × VOA YOML 2 × VOA YOML		Z + OF, I × MEOH Z + MEOH	-	VOCs	- - -
			-		_
			-		=
OVA MEASUREMENTS					
Background Breathing zone	0.0				
Boring Headspace	1.7				
SAMPLE DESCRIPTION					2
DEPTH: <u>12-14</u>	DESCRIPTION:	Yellansh Brown gravel, prace S.	Bacdin It, Mi	m Sand with	
					-
GENERAL COMMENTS					=
			······································		

GENERAL INFORMATION		······································	
SITE NAME: JBA - S	WMU56	PROJECT NO.	J1/0202. 1A. O
SAMPLE NO. JWMU56	- TMW08- 5064	BORING NO.	TMW08
DATE/TIME COLLECTED: SAMPLE METHOD / DEPTH: SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE; MS/MSD REQUESTED:			Pul Kiyor dir Amanda Malamez NA
SAMPLE CONTAINERS, PRESER	RVATIVES, ANALYSIS		
Sample Container 4 x 407 527 3 x 40m1 1/0.4 2 x 40m1 1/0.4		<u> </u>	Analysis Requested DSD, PCB, PAN, PCSI, Keb, Met-L VOCS G-CO
OVA MEASUREMENTS			
Background Breathing zone Boring Headspace	<u> </u>		
SAMPLE DESCRIPTION			
DEPTH: <u>2 - 14</u>	DESCRIPTION: <u>Yello Meden</u> M. dense, M.	- Sond with	h Selt and grace (
CENED AL COMMENTS			
GENERAL COMMENTS Bring advined Brown 12-14 to Room Original Bor	directly adjacent to or obtain additional sa- ring. Soil for other analytes	I for surgery.	liscrete sampled Vols ? 60 intertent

SITE NAME:     Star A - Scomussic     PROJECT NO.     51/0202.8A.D       SAMPLE NO.     Scomussic     DOING NO.     Torkog       DATE/TIME COLLECTED:     12/6/12 C2 /430     PERSONNEL     PERSONNEL       SAMPLE METHOD / DEPTH:     000 / 14/00     PERSONNEL     PERSONNEL       SAMPLE METHOD / DEPTH:     000 / 14/00     PERSONNEL     PERSONNEL       SAMPLE METHOD / DEPTH:     000 / 14/00     PERSONNEL     PERSONNEL       SAMPLE ON DUPLICATE     VIS     SEDEMONT     SLUDGE       SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS     Sample Constance     NA       Sample Constance     NA     2x 00, 1X MEOK     BRO, fldd, PAH, hoshed, Ma       Jx 40 #1     VOA     2x 00, 1X MEOK     GR 0       Description     0     D     D       Backgoound     0     0       Beachgoose     3.6       SAMPLE DESCRIPTION     1/14/12       DEPTH:     1/4/12     DESCRIPTION:       DEPTH:     1/4/12     DESCRIPTION:       CENERAL COMMENTS     CENERAL COMMENTS	GENERAL INFORM	ATION	······································			
DATE/TIME COLLECTED. SAMPLE METHOD / DEPTH: Gr. 6/14/20 SAMPLE METHOD / DEPTH: SAMPLE QA SPLIT: SAMPLE QA SPLIT: SAMPLE QA SPLIT: SAMPLE QA SPLIT: SAMPLE QA SPLIT: YES NO SEDIMENT SLUDGE SAMPLE NO. NA SAMPLE NO. SAMPLE DESCRIPTION DEPTH: UP(C) SAMPLE DESCRIPTION DEPTH: UP(C) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE NO. SAMPLE NO. SAMPLE NO. SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE NO. SAMPLE NO	SITE NAME: 3	PA-Samus	6	PROJECT NO.	51/0202.8A.2	
SAMPLE METHOD / DEPTH: Co. 6/ 14/20 APRIL 1000 APRIL 10	SAMPLE NO.	UMUSG. TIMW	09-5010	BORING NO	TMWOg	
Sample Container       Presentitive       Atalysis Remested         3 × 40 ml       V0A       2 × 0T, 1× MEOK       Dho, fld, PAH, hethed, Ma         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         3 × 40 ml       V0A       2 × 0T, 1× MEOK       V0C;         0 × 40 ml       2 × 0T, 1× MEOK       0       0         0 × 40 ml       2 × 0T, 1× MEOK       0       0         0 × 40 ml       2 × 0T, 1× MEOK       0       0         0 × 40 ml       0       0       0       0         0 × 40 ml       0       0       0       0         0 × 40 ml       0       0       0       0       0         0 × 40 ml       0       0       0       0       0       0         0 × 40 ml       0       0       0       0       0       0       0         0 × 40 ml       0       0       0       0       0<	SAMPLE METHOD / I SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICA	DEPTH: Grad / / 4 SOTO YES ATE: YES	SEDIMENT SLUDGE NO SI NO DUPLIC		Maliney NA	
4x     Yozz     Ome       3x     40 + 1     VOA       3x     50 + 1     VOA       4x     50 + 1     VOA       50 + 1     50 + 1     1       51 + 1     51 + 1     51 + 1       52 + 1     51 + 1     1       52 + 1     51 + 1     1	SAMPLE CONTAINE	CRS, PRESERVATIVES, ANALY	ISIS			
Background       D         Breathing zone       Boring         Boring       3.6         SAMPLE DESCRIPTION       Bescription:         DEPTH:       14-16         DESCRIPTION:       Pale brow of Clappy Gravelly F-M Sand         GENERAL COMMENTS       Bescription:	44 402 0 3×40m1 V	in and a second	Non a 2 x DI, 1 × MEOH		DAO, PCS, PAH, Lost Kerd,	! Mek
Background       D         Breathing zone       Boring         Boring       3.6         SAMPLE DESCRIPTION       Bescription:         DEPTH:       14-16         DESCRIPTION:       Pale brow of Clappy Gravelly F-M Sand         GENERAL COMMENTS       Bescription:				 		
Breathing zone       Boring       Headspace       3.6       SAMPLE DESCRIPTION       DEPTH:     14-16       DESCRIPTION:       9-16       Jone       Jone <tr< td=""><td>OVA MEASUREMEN</td><td>TS</td><td>······································</td><td></td><td></td><td></td></tr<>	OVA MEASUREMEN	TS	······································			
Headspace     3.6       SAMPLE DESCRIPTION     DEPTH:     14-16       DEPTH:     14-16     DESCRIPTION:       GENERAL COMMENTS	Breathing zone	D				
DEPTH: 14-16 DESCRIPTION: Pale brow of Clayery Gravelly F-M Sand duse, Moist GENERAL COMMENTS		3.6				
GENERAL-COMMENTS	SAMPLE DESCRIPTI	ION				
	DEPTH: /C		Pull brown ( Ause, moist	laper grav	elly F-M Sand	
	GENERAL COMMEN	ITS				
			······································			
					······································	

i

ì

GENERAL INFO	RMATION		<u> </u>			
SITE NAME:	SWMU	56		PROJEC	TNO J10	202
SAMPLE NO.	SWM	1456-5B01		BORIN	g no, <b>SB</b>	01
DATE/TIME COLI SAMPLE METHO SAMPLE MEDIA: SAMPLE QA SPLI SAMPLE QC DUP MS/MSD REQUES	D / DEPTH: T: LICATE:	12/03/12 Notify YES YES YES	/ 1015 DEDYE / (-2' SEDIMENT SI NO NO NO	PERSO UDGE SPLIT SAMPL DUPLICATE SAMPL	_AMA .e no. N	11 Raymaker anda Malaney A
SAMPLE CONTA	INERS, PRESER	VATIVES, ANALY	SIS			
<u>Sample (</u> <u>1 - 40</u> <u>1 - 40</u>			Preservative NonC			Analysis Requested pesticides herbicides
·						
OVA MEASUREM	1ENTS					
Background Breathing zone Boring Headspace	)	O				
SAMPLE DESCRI	PTION		· · · · · · · · · · · · · · · · · · ·			
DEPTH:	1-2	DESCRIPTION:	Silt, Olar 14	greyish b	inn 1	ned. stiff, moist
-			·····			·
GENERAL COMM	4ENTS			· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	···		······································			

GENERAL INFORMATION				
SITE NAME: SWMU	S.		PROJECT NO	2110202
SAMPLE NOSWMU	56-5B02		BORING NO	SBOZ
DATE/TIME COLLECTED: SAMPLE METHOD / DEPTH: SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED:	12 03/12 Martin conte Son YES YES YES	1030 I-Z SEDIMENT NO NO NO	PERSONNEL SLUDGE SPLIT SAMPLE NO DUPLICATE SAMPLE NO	
SAMPLE CONTAINERS, PRESER	VATIVES, ANALYS	IS		
<u>Sample Container</u> 1-402. 1-402.		Preservativ Mine V		<u>Analysis Requested</u> <u>pesticides</u> <u>nerbicides</u>
			· · · · · · ·	·
OVA MEASUREMENTS				
Background Breathing zone Boring Headspace	0 0			
SAMPLE DESCRIPTION	<u></u>			- <u>,                                    </u>
DEPTH: <u>1-2</u>	_ DESCRIPTION: <u>O</u>	layey silt med. dens	(yellowish bron é, moist fo d	nn (10 4k-5/8) pw/grav y
GENERAL COMMENTS				
				······································

i

.

GENERAL INFOR	MATION			······································	
SITE NAME:	SWMU	56		PROJECT NO.	J110202
SAMPLE NO.	SWMU	56-5803		BORING NO.	SB03
DATE/TIME COLL SAMPLE METHOD SAMPLE MEDIA: SAMPLE QA SPLIT SAMPLE QC DUPL MS/MSD REQUEST	) / DEPTH: F: JICATE:	12/03/12 Mackacove Soll YES YES YES	IO45 JEDIMENT SI NO NO NO	PERSONNEL: .UDGE SPLIT SAMPLE NO. DUPLICATE SAMPLE NO.	Amanda Malanay NA
SAMPLE CONTAI	INERS, PRESE	RVATIVES, ANALY	'SIS		
<u>Sample C</u>   - 402   - 402		·	Preservative Nonc		Analysis Requested PESTICALES Nev bioldes
					······································
OVA MEASUREM	ENTS				
Background Breathing zone Boring Headspace		0			,
SAMPLE DESCRI	PTION				
DEPTH:	1-2	DESCRIPTION:	gravelly Sand louse, more		Nn (101/R-5/6)7
-					
GENERAL COMM	IENTS				· · · · · · · · · · · · · · · · · · ·
	·· <u>·</u> ·································				

GENERAL INFORM	ATION				
SITE NAME:	SWMU	56		PROJECT NO.	J110202
SAMPLE NO.	Swmu	56- SB0	4	BORING NO.	SB04
DATE/TIME COLLEC SAMPLE METHOD / L SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLIC/ MS/MSD REQUESTED	DEPTH: ATE:	2/03/2 Matrotore SOD YES YES YES	SEDIMENT NO NO	PERSONNEL: SLUDGE SPLIT SAMPLE NO. DUPLICATE SAMPLE NO.	Amanda Malancy NA
SAMPLE CONTAINE	RS, PRESEI	RVATIVES, ANALI	(SIS		
	2., 2., 2., 		hope		Analysis Requested PESTICIDES hexb;Cicles
OVA MEASUREMEN Background Breathing zone	TS	<u>Ô</u>			
Boring Headspace		6.]			
SAMPLE DESCRIPTI	ON				·····
DEPTH:	1-72(15			23/2) 1000e	ganics, yellowish (104123/6), mstift,
GENERAL COMMEN	ns 		NH NA NA NA	<u></u>	· · · · · · · · · · · · · · · · · · ·

.

# Appendix C-3

# **Groundwater Sampling Forms**

۰ ۱

A

GENERAL INFORMATION				
SITE NAME JBA-	SWMU56	PROJECT NO.	SHOZOZ.P.	4.0
SAMPLE NO. SUMU	56-TMWOI	Well NO.		
DATE/TIME COLLECTED SAMPLE METHOD	12/5/12 108 peristalfic 198	45 personnel	Angenda Mai	leney esker
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO.	NA SWM456-TM	 @850
SAMPLE CONTAINERS, PR	ESERVATIVES, ANALYSIS	<u></u>		
Sample Container ZOX IL Autor X 40 MI VOA 100 X 40 MI VOA 100 X 500 mI Buy	None HCI HNO		Analysis Requested DRO, IAH, PCB, GRO, YOC; Metrils	Pest, Herb
WELL PURGING DATA	<u></u> _	<u> </u>	- <u></u>	
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head	12/5/12 0745 0840 NA	Well Depth (ft, BTOC) Depth to Water (ft BTOC) Water Column Length Volume of Water in Woll (gal) Casing Volumes to Purge Minimum to Purge (gal) Actual Purge (gal)	30A+	
FIELD MEASUREMENTS				
Time         Amount Purged (gal)           0805         8L           0811         10.4L           0820         14 L           0830         18 L           0840         22 L	pH Temperature (°C) 5723 5703 4.97 4.97 4.97	Conductivity Dissolved (mS/cm) Oxygen (mg/L)	ORP Turbid (mV) (NTU 333. 777. 56, 18.1 9.9	s) 2 . 0
FIELD EQUIPMENT AND CA Water Level Probe Water Quality Meter	ALIBRATION NA VSL 6820 VI	2	Calibration	
GENERAL COMMENTS - Tusin 10tal - Duplicate Sc	C C 28'6, S mple Collectio	/	······································	
- purge rate 30 - sample called	ton rate 300 mu			· .

GENERAL INFORMATION			<u> </u>
site name <u>BA p</u> ë	sc/suma-sto	PRÓJECT NO,	TMW-02
SAMPLE NO. SWMUS	3C/Swmu-576 56-TMWQA-GWQ	WELL NO.	<u>Тмш-од</u> <u> 3110202-ра</u>
DATE/TIME COLLECTED SAMPLE METHOD	5 DEC/2/141 perismentric / am	O PERSONNEL	1
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater Surface Water YES NO YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO.	
SAMPLE CONTAINERS, PR	ESERVATIVES, ANALYSIS	<u></u>	
<u>6-40 wL</u> VOA 1-500mL POH 10-1L amber	HC HA New	ervative	Analysis Requested VOCS/G.FD Metals Pessri/Herbi DRO/DAH PCB
WELL PURGING DATA			
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head	12/05/12 1130 1400 NA	Well Depth (ft. BTOC) Depth to Water (ft BTOC) Water Column Length Volume of Water in Well (gal) Casing Volumes to Purge Minimum to Purge (gal) Actual Purge (gal)	30 NA
FIELD MEASUREMENTS			
Time         Amount           Purged (gal)         Purged (gal)           Image: Provide the second secon		(mS/cm) Oxygen (mg/L)	ORP Turbidity (mV) (NTU's)
			·····
FIELD EQUIPMENT AND C. Water Level Probe Water Quality Meter	NA VST 6820 V2		<u>Calibration</u>
GENERAL COMMENTS	alter 25 W	5 Surging i de	Velopment
- Poor rechage Observed Volum - Purp et Lowe	e for invited	pH redding.	

GENERAL IN	FORMATION	······						
SITE NAME	JBA	F-SW	MU 56	> out	PROJECT NO	511020	JZ.PA.C	С
SAMPLE NO.	SUM	<u>u56-t</u>	MW03-	GWIE	WELL NC	TMWC	73	
DATE/TIME C SAMPLE MET	OLLECTED	12/6/1. peristo	2 /109	50	_ PERSONNEI	L. Jimt		
SAMPLE MED SAMPLE QA S SAMPLE QC D MS/MSD REQU	PLIT: DUPLICATE:	Groundwater YES YES YES	Surface Water NO NO NO	SPLI DUPLICAT	T SAMPLE NC E SAMPLE NC	NA NA		
~		ESERVATIVE	<u> </u>		,			
	<u>Container</u> Ambl	• - -		ivative	-	DRO, PAH	<u>Requested</u> s, P(Bs, PCs sc.s	vŧ, ⊮
WELL PURGI	NG DATA							
Date Time Started Time Completed Hnu Measureme		2/6/10  0845  095	0	Depth to Water	Depth (ft. BTOC) Water (ft BTOC) Column Lengtl ter in Well (gal	) <u>NA-</u>	<del>T</del> 28	
Background	1113	N!	Ą.		olumes to Purg			
Breathing Zor Well Head	ne		1	-	im to Purge (gal ctual Purge (gal	1		
FIELD MEASU	REMENTS						·	
Time	Amount Purged (gal)	pH	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	ORP ) (mV)	Turbidity (NTU's)	
0855	5	6.13			2		87.2	
0900	415	5.26		reduced		ant louis	100	
0930	16.5	5.06		1 IV VI COPCU	1400 30	DML/Min	1100 48,3	
0945	19.0	5,03					9.0	
				•.				
TELD FOLUD	MENT AND CA	AT IDD ATLAN			<u></u>		·	
			odel			<b>Calibration</b>		
Water Level Pro Water Quality M		YSJ 680	20 V2-	-	12/	6/12		
GENERAL CO					-, , ···			
Star 6					-1940			
Theing	intake	@ 26'b	15				··	
Sample	collect	in rati	gs = 500 m (	-1 10 -				
- my	~~ I I ~ ~ I I			Imin				

ř

GENERAL INFORMATION						
SITE NAME JBA -	-SWMUST	e	-10 Ē	PROJECT NO.	J11020	Z.PA.D
sample no. <u>Slumus</u>	G-TMWE	<u> 94 - G</u>	WØ	WELL NO.	TMWC	, y
DATE/TIME COLLECTED SAMPLE METHOD	12/6/12 Desussalt	/ 11,5	- calo	PERSONNEL	_ lint	1
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater Surf YES YES YES	NO NO NO NO		Γ SAMPLE NO. E SAMPLE NO.		
SAMPLE CONTAINERS, PRI	ESERVATIVES, AN	ALYSIS				<u> </u>
Sample Container IDX II. Amber M. 6 & 40m IVOD IX. 5 Coppl Dop IX. 5 Coppl Dop		Preserv HCI HUO3				Requested [AV, Fe37, Herb [CS
WELL PURGING DATA						<u> </u>
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head	12/6/12 1043 1112 1112 1112		Depth to Water Water Volume of Wat Casing V Minimu	epth (ft. BTOC) Water (ft BTOC) Column Length er in Well (gal) olumes to Purge m to Purge (gal) ctual Purge (gal)		
FIELD MEASUREMENTS		·			·	<u></u>
Time Amount Purged (gal)	рН Те	mperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU's)
1053 5.0	5.51					349. 2 60.6
1108 12.5	4.97-	red	uced to	100mL/	nih	13.9 9.4
1112 14.0	4.96					0.5
FIELD EQUIPMENT AND CA	LIBRATION					<u> </u>
Water Level Probe Water Quality Meter	NB VST 6820	002	-	12/6/	Calibration	
GENERAL COMMENTS	500 ML/	min.				
	•					
- tubing inter - sample collection	n rate O	100 mL	Imin			

ь ·

!

GENERAL INFORMATION				
site name JBA -	SWMUSQ	PROJECT NO	SHOZOZ, JA.	2
SAMPLE NO. SCUMM	56-TMW05-G	WOU WELL NO	SUMUSG-TA	1405
DATE/TIME COLLECTED SAMPLE METHOD		personnei	Amanda A Pani R	nalaney aymater
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO NO	• •	NA	·
SAMPLE CONTAINERS, PR	RESERVATIVES, ANALYSIS	· · · · · · · · · · · · · · · · · · ·		
Sample Container 10 - 12 amba 6 - 4cm2 via 1-500 m2	rN	ervative Ohc CL N ⁰ 3	Analysis Requested PCB, PAH, PCSL, VOCS, CRE MEHAL	sherb., DRD
WELL PURGING DATA		<u></u>		
Date 12/04 Time Started Time Completed Hnu Measurements	12 <b>1330</b> [5#50	Well Depth (ft. BTOC) Depth to Water (ft BTOC) Water Column Length Volume of Water in Well (gal)		
Background	NA	Casing Volumes to Purge		
Breathing Zone	·	Minimum to Purge (gal)		
Well Head		Actual Purge (gal)		
FIELD MEASUREMENTS			<u></u>	
Time Amount Purged (gen)	pH Temperature	Conductivity Dissolved (mS/cm) Oxygen (mg/L)	ORP Turbid (mV) (NTU	•
1330	4.60		1299	18
14/5 225			50	<u>{</u> }
445 31.5	4.59		43.	
1465 42.5	4.38		28.10	
1505 47,5				
1575 57.5	4,38		21:	7
15 20 60.0	4.37		/2.	
FIELD EQUIPMENT AND C				
Water Level Probe	Model N/B-		<b>Calibration</b>	
Water Quality Moter	VST 6820 V2		12/04/12	
CENTRAL COMPENSION				
GENERAL COMMENTS				
- tubing intake	Set @ 281 bas	· · · · · · · · · · · · · · · · · · ·		·····
- burge, rato 1	500 m - 1.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _		
-purge rate ! -Sample colled	Hon rate ~15	omymin		
		L		

GENERAL INFORMATION						
site name <u>SWM</u> sample no. <u>SWMUSC</u>	456	6010		PROJECT NO.	JBA	J <u>110202.11</u> , T
SAMPLE NO. <u>SWMUSG</u>	-TMWEG -	at par	<u>l</u>	WELL NO.	SWMU	56-TMWC
DATE/TIME COLLECTED SAMPLE METHOD	12/3/12 1000 From			PERSONNEL	Amand	eaymaker Malanoy
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater Su YES YES YES	NO NO NO		T SAMPLE NO E SAMPLE NO	NA	, 
SAMPLE CONTAINERS, PR	ESERVATIVES, A	NALYSIS		······································		
Sample Container 10x 16 Amber 6x 40 mc VOH 1x 500ml Poly		Prese Non HC HN	L	 	DRO, PH	Requested K. Patitert PCB, La R.O La R.O
WELL PURGING DATA						
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head	12/3/02 7338-13, 1403 [5 NA	28 3 <b>40 1</b> 53	Depth to Wate Volume of Wa Casing V Minimu	Depth (ft. BTOC) _ Water (ft BTOC) _ r Column Length _ hter in Well (gal) _ /olumes to Purge _ m to Purge (gal) _ ctual Purge (gal) _		
FIELD MEASUREMENTS	рн Р	mount ange all	Conductivity	Dissolved	ORP	Turbidity
W Purged (gal)	601	() 	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU's)
1340 1.3	4.78	6				40
1345 20	4,95	8.5				30,1
1355	4.73	3.5				20.7
1400	4,70	16				12.1
1403 4.4	4,73	17.5	· •			10.0
			L	Lk.		
FIELD EQUIPMENT AND CA	Model				<u>Calibration</u>	
Water Level Probe Water Quality Meter	NB 101 60	2012		12/	3/12	
GENERAL COMMENTS - Clhable to Sitio temp W - publing intak				level « Pe	obe d	bes not

١

purge rate - 500 m Umin Sample collection rate - 100 m Umin

GENERAL INFORMATION				
	РВС- СММИ-		-7110309-	PA.0
SAMPLE NO. SWMUS	56-TMW07-50	5 G-WOZ WELL NO	- TMW-07	<b></b>
DATE/TIME COLLECTED SAMPLE METHOD	405-012/1215 perustaltou/0		Hubbell	
SAMPLE MEDIA; SAMPLE QA SPLIT; SAMPLE QC DUPLICATE; MS/MSD REQUESTED	Groundwater Surface Water YES NO YES NO NO	SPLIT SAMPLE NO DUPLICATE SAMPLE NO		
SAMPLE CONTAINERS, PR	ESERVATIVES, ANALYSIS	· <u>·</u> ··································	······	
Sample Container 30 × 10 ambe 18 × 40mc Vie 37 500mL p	er no	nvative MC CI O-3	Analysis Requested DRO, pest., h VOCS, GRO Metals	exb., PCB, PAH
WELL PURGING DATA	; <u>*****</u>	<u></u>		
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone	40ECIZ 1050 1210	Well Depth (ft. BTOC Depth to Water (ft BTOC Water Column Lengti Volume of Water in Well (gal Casing Volumes to Purge Minimum to Purge (gal		
Well Head	ø	Actual Purge (gal		
FIELD MEASUREMENTS				<u></u>
Time Amount Purged (gal)	pH Temperature	Conductivity Dissolved (mS/cm) Oxygen (mg/L	ORP Turbid ) (mV) (NTU	•
1050 1.51		iers removal t	Development.	7
1135 2.5L 1145 6,5L	5.09 4.90		9,  8,6	
1200 12.5L	Y.77		3.	
1205-13.31	4.75		3.2	<b></b>
1210 14.1L	4.75			
FIELD EQUIPMENT AND CA				J
	Model		Calibration	
Water Level Probe Water Quality Meter	YST 650 MD 10870 V2	5 4.	DECIZ	
GENERAL COMMENTS	e @ 400mL/mi			<u></u>
•				
Sample cullect	ion 10176 - 400	mi/mim	··	
- tubing Intake	at 28' bgs			

ī.

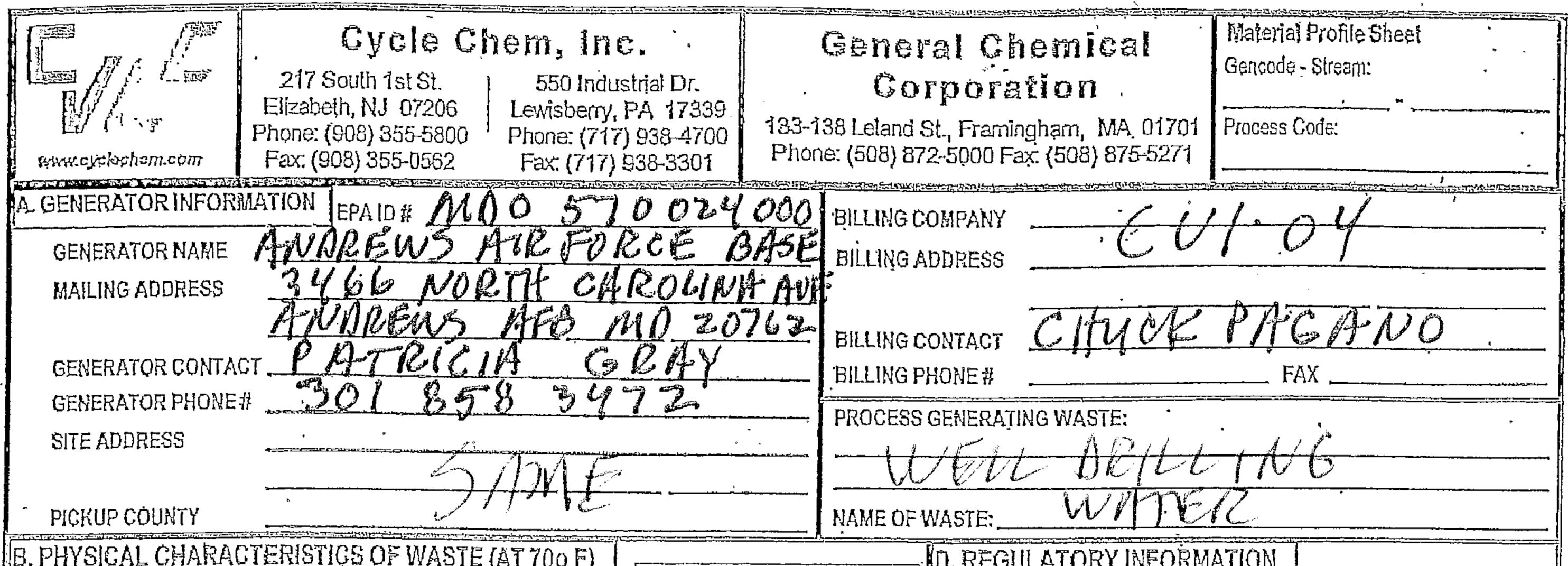
	GENERAL INFORMATION						
	SITE NAME TBA-	- SWM	156		PROJECT NO.	SILOZ	02. PA. 2
	SAMPLE NO. SCUMO	156-TN	W08-6	WOZ.	WELL NO.	SWMUS	16-TMW08
	DATE/TIME COLLECTED SAMPLE METHOD	12/04/12 peristr	1 10450	91120	PERSONNEL	Amau Jim th	la Malaney
	SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE:	YES	Surface Water		T SAMPLE NO.	NA	
	MS/MSD REQUESTED	YES	<u>NØ</u>				
	SAMPLE CONTAINERS, PI	CESERVATIVES,					
lamber broke	<u>Sample Container</u> <u>HUKIL AMER</u> <u>6 × 40mL ViA</u> <u>1 × 500mL p.1</u>	_ • .	Preservi MM AC tNO	U	- C  		Requested pest. herb. SEO als
	WELL PURGING DATA						
	Date	12/3/12	Pattin	Well I	Depth (ft. BTOC)	30.	6F
	Time Started	0800	, of the		Water (ft BTOC)	NA	
	Time Completed	1115			r Column Length	1	
	Hnu Measurements			Volume of Wa	nter in Well (gal)		
	Background	NA		Casing V	olumes to Purge		
	Breathing Zone	·		Minimu	um to Purge (gal)		
	Well Head			А	ctual Purge (gal)		
	FIELD MEASUREMENTS						
	Time Amount Purged (gal)	pH	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU's)
	0815	5.38					12409
	0930 5	491					1013,1
	1015 10	4.75					302.5
1049 (1)	1045 @1413	4.14					56.4
Ø	1115 15	4/13					522
	1						
	FIELD EQUIPMENT AND C		).I			O-R-H	
	Water Level Probe	NA				<u>Calibration</u>	
	Water Quality Meter	YSE 6	\$20 V2			12/04/	12
	GENERAL COMMENTS "Unable to	monitor	GW leve	el, prol	be does	not f	it in
	$\underline{\sim} > \underline{ca>}ng$	sediment				to be	removed
	several time	s to clea	in cheek	ball (	during in		
	- tubing in take				3		
				purge	Call - I	tuu mu	lmin - 150 m L/m
				samp.	(Mecha	n vare	- 150 m -/m

GENERAL IN	FORMATION							•
SITE NAME	JBA	-SW	MUSA	6	_ PROJECT NO.	51100	07. PH	. 0
SAMPLE NO,	SUMU56	-TMW	09-60	-70	WELL NO.	TMW	59	
DATE/TIME ( SAMPLE MET		12/stra	E 12/5/12	@ 0950	PERSONNEL	Peul	Rymack	
SAMPLE MEI SAMPLE QA SAMPLE QC I MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	Surface Water		T SAMPLE NO. È SAMPLE NO.			
SAMPLE CO	NTAINERS, PRI	SERVATIVES	8, ANALYSIS					1
107 1c	Container Ambes ml VOA m Pal-1		Nore Nore HCI HN	avative Юз	-  	PCBG PH	<u>Requested</u> 14, D&O, fe 1/o C -S	art, Hest
WELL PURG	ING DATA	·····					······································	
Date Time Started Time Complete <u>Hnu Measurem</u> Background Breathing Zo Well Head	ents -	12/5, 0945 0948 NA	1/2	Depth to Water Volume of Wa Casing V	Depth (ft. BTOC) Water (ft BTOC) r Column Length tter in Well (gal) Volumes to Purge im to Purge (gal) ctual Purge (gal)		k 	
FIELD MEAS	UREMENTS							
Time	Amount Purged (gal)	рН	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU's)	
0857	2.46	5.29					852.5	
0919	ASL	5,18					2.32,8	
0410	6.3L 9.3L	5,06			· · · · · · · · · · · · · · · · · · ·		171.00 SY 6	
0943	14.71	5100		·	·		7.8	
							<u> </u>	
FIELD EQUIP	PMENT AND CA	LIBRATION Mc	del			Calibration		
Water Level Pro Water Quality N	-	VSF N		r	12/51	<u>canoration</u>		
GENERAL CO TU.G.A		, <u>C</u> 21	sft bys				, <u>, , , , , , , , , , , , , , , , , , </u>	
-purge	i Samp	ple collec	tion rat	e 300 mL	mn			

SAMPLE NO DATE/TIME COLLECTE SAMPLE METHOD	D 12/3/1	2 C /C	515	PERSONNEL	Paul	Raym Inda M
SAMPLE MEDIA; SAMPLE QA SPLIT: SAMPLE QC DUPLICAT MS/MSD REQUESTED	Groundwater YES 'E: YES YES	Surface Water ( NO NO NO		Charleno. IT SAMPLE NO. E SAMPLE NO.	>	
SAMPLE CONTAINER Sample Container 10 × 11 Amb 6 × 40m/ 184 1 × 500m/ 6	V 7	Vone Yore	<u>rvative</u>	  	DROLPCI GRO	s Requested S. P. M. J. P. V. L. C. I. L. C. L. S.
WELL PURGING DATA Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head		1	Depth to Wate: Volume of We Casing V	Depth (ft. BTOC) Water (ft BTOC) r Column Length ter in Well (gal) /olumes to Purge m to Purge (gal) tual Purge (gal)		
FIELD MEASUREMEN Time Amou Purged (	nt pH	Temperature (°C) N/A	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV) NA	Turbidit (NTU's)
FIELD EQUIPMENT AN Water Level Probe Water Quality Meter			-		Calibration	

.

## WATER SAMPLE COLLECTION FIELD SHEET


GENERAL INFORMATION	<u> </u>	· · · · · · · · · · · · · · · · · · ·					
SITE NAME 5BA	SWMU	56		PROJECT NO.	Jlac	02. PA. 0	
SAMPLE NOSuma	56-AQ	EBOI		WELL NO.	NA	· · · · · · · · · · · · · · · · · · ·	
DATE/TIME COLLECTED SAMPLE METHOD	12/4/12	@ 14	30	PERSONNEL	fear f	ymter	
SAMPLE MEDIA; SAMPLE QA SPLIT; SAMPLE QC DUPLICATE; MS/MSD REQUESTED	Groundwater YES YES YES	Surface Water ( NO NO NO	SPLI	ter <u>Een</u> T SAMPLE NO. E SAMPLE NO.			
SAMPLE CONTAINERS, PR	ESERVATIVE	5, ANALYSIS				<u>.</u>	
Sample Container 10× 12 Amber 6× 40ml VOA 1× 500ml Poly	-	Presen Nor HC/ HC/	rvative ℓ		Analysis DRO 144 GRO V Mitels	Requested //C.S. PrS+ //O.C.	Herb
WELL PURGING DATA						)	
Date Time Started Time Completed <u>Hnu Measurements</u> Background Breathing Zone Well Head			Depth to Water Volume of Wa Casing V	Depth (ft. BTOC) _ Water (ft BTOC) _ r Column Length _ ter in Well (gal) _ folumes to Purge _ im to Purge (gal) _ ctual Purge (gal)			
/ FIELD MEASUREMENTS							
Time Amount Purged (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU's)	
			and the second				
			 			· · · · · · · · · · · · · · · · · · ·	
FIELD EQUIPMENT AND C.					Calibration		
Water Level Probe Water Quality Meter		<u>odel</u>	-	· · · · · · · · · · · · · · · · · · ·	Calibration		
GENERAL COMMENTS	rando	water	Equ	procent	blank	ра. 	

# Appendix C-4

## **Investigation-Derived Waste Disposal Documentation**

	0104	768755
CleanVenture/CycleChem	CVCC	173465
	Environmental Ser	vices Source
BILL OF LADING		

Generator's Name and Mailing Address JOINT BASE AN OREWS ATW: 46174 FER 3466 NORTH CAROLINA AVE FREIHOPER AND THE		BC		AE	
Generator's Phone 30/858-4724 NOI44W3 1113, 110 20162			SM	ys r	
Transporter 1 Company Name Clean Venture, Inc.		Sta	te Trans. ID-NJDE	PE	
Transporter 2 Company Name			Dəcal N		
Designated Facility Name and Site Address 10. US EPA ID Numbe	ar.		nsporter's Phone ( te Trans. ID-NJDE		) 368-9170
Cycle Chem, Inc.	4		Decal N		
550 Industrial Drive		Tra	nsporter's Phone (		)
Lewisberry, PA 17339  P A D 0 6 7 0 9			cility's Phone (	717)	938-4700
US DOT Description (Including Proper Shipping Name, Hazard Class or Division, ID Number and Packing Group)	Contair No.	Type	Total Quantity	Unit Wt/Vol	Waste No.
a. Non DOT/EPA Regulated Material	X15	OM	× 5100	P	None
b. NON DOT/EPA REGULATED MATERIAZ /SOIL CUITINGS)	¥5	DM	X2000	P	NONE
· NON DOT/EPAREGULATED MATERIAL (SLUDGE)	XII	AM	X2100	p	NONE
d.	/~/(	<u>vr 1</u>			
J. Additional Descriptions for Materials Listed Above					
aLF-05-5, OW C3 640-3, 55.27-1, SWMU-5372) SWMU b. DAYE WIDE 25M-5 CCI Generator # and Product Codes:	4				057.04.09
24 hour Emergency Response Phone # (410) 368-9170			CVI	3-N	5N
a)					
a) GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by h regulations and are non-hazardous by USEPA & applicable state regulations.	ly and accurat highway accord	ely desiding to a	cribed above by p applicable internation	roper sh onal and	ipping name and ar I national governmer
GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by heregulations and are non-hazardous by USEPA & applicable state regulations.         PLACARDS       MD	ly and accurat highway accord PLAC/ SUPPI	ARDS	ipplicable internation	NO- FURM	i national governmer
GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by heregulations and are non-hazardous by USEPA & applicable state regulations.         PLACARDS REOUIRED         Printed/Typed Name	PLAC	ARDS	ipplicable internation	NO- FURM	i national governmer
GENERATOR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of the content of the con	PLAC			NO- FURI	NISHED BY CARRIER Month Day Yes $9 \cdot 26 \cdot 13$
GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by heregulations and are non-hazardous by USEPA & applicable state regulations.         PLACARDS REQUIRED         PLACARDS REQUIRED         Printed/Typed Name         Transporter 1 Acknowledgement of Receipt of Materials         Beinted/Typed Name	PLAC/ SUPPI			NO- FURM	Inational government vished by carrier $9 \cdot 26 \cdot 13$
GENERATOR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by here used in the contents of the content of th	PLAC/ SUPPI			NO- FURM	$\begin{array}{c} \text{National governmer} \\ \text{VISHED BY CARRIER} \\ \hline Month Day Yea \\ \hline 9 \cdot 26 \cdot 13 \\ \hline 9 \cdot 10 \\ \hline $
GENERATOR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are full classified, packed, marked, and labeled, and are in all respects in proper condition for transport by heregulations and are non-hazardous by USEPA & applicable state regulations.         PLACARDS REOURED         PLACARDS MOD         Printed/Typed Name         Transporter 1 Acknowledgement of Receipt of Materials         Signature         Mod         Mod         Signature         Transporter 1 Acknowledgement of Receipt of Materials         Mod         Mod         Mod         Mod         Signature         Transporter 1 Acknowledgement of Receipt of Materials         Mod	PLAC/ SUPPI				Inational government NISHED BY CARRIER Month Day Yea $9 \cdot 26 \cdot 13$ Month Day Yea $9 \cdot 26 \cdot 13$



		auid/Solid/Sludge 🦯	
Color/Physical Description:		1/8/1	Is it USEPA haz waste? OYes ONo USEPA Haz Codes:
Wastewater:	O Weslewaler Ø Non-weslewaler	ige	EPA Sub Gategories:
Specific Gravity	L Solic	d	Is It STATE waste? OYes ONO
Physical State:	T Single Phase T Sold T Garlasson Dumpa	· ·	STATE Haz Codes:
i (Tilatióti otaró:	Image: Filled in the second	•	DOT Hazardous Material? O Yes SNo
Flash Point:	O Flash Point <74 F O Flash Point 101-140 F O Flash Point >1 O Flash Point 74-100 F O Flash Point 141-200 F Ø No Flash Point	200 F O' Exact Flash Point:	
·	O Open cup / O Closed cup	······································	Hazard Class: UN/NA#: P.G.:
ignitable Solid?	O Yes O No		RQ: ERG#:
pH:	O <2.0 O 2.01-5.0 Ø 5.01-9.0 O 9.01-12:49 O >12.5 O 1	Exact pH	E. SHIPPING INFORMATION
C. CHEMICAL	COMPOSITION	<u> </u>	
			Shipment Method: O Bulk Liquid - Tanker O Palfel(a) O Drum(Size):
	LISDS attached 🔲 Supplemental Analysis 🔲 Additonal Information		O Bulk Solid - Emp Tir O Toto(s) O Bulk Solid - Roll Off O Cubic Yard Box(s) O-Other(Sizo):
<u>Chemical Compo</u>	<u>Percent</u> <u>Mi</u>	<u>nîmum Maxîmum</u>	$\sqrt{N}$
	$\frac{1}{n + n}$	۵ مربعہ میں	Anticipated Volume: /// Per ///
	HAC PHUNG -		Quantity: Price: / Unit:
		·	F. SPECIAL HANDLING CONSIDERATIONS
IA ANA	THUR. HOV	· · · · · · ·	Radloactive PARW SQG . No Land Filling
			Etiologic/Medical Waste DRMS/DRMO Waste Incinerate Only
•	1		☐ Fuming ☐ CERCLA Waste ☐ Recycle Only ☐ Phenolics ☐ Asbestos ☐ Other:
G. TRANSFOR	TERARRANGEMENTS		•
CGUGGC Prov	ides Transportation 🕖 Other:	r	
O Customer Deliv	rers to CCI/GCC		Indicate if waste contains any of the following:
O Customer Deliv	rers to End Facility via CCI/GCC	┑┍╪╝ <b>╲╾╩┲╍╶╤╾┲╶╌╸╕╕</b> ═╼╅ <del>┙╵╵╵╷╴╸╸╸┍┍╶╘┍</del> ┧┟╘ <del>╼╺┍╷╶╻</del> ╺┱╼	. <u>Non-Reg. or Less Then</u> <u>or Actual</u>
H. OTHER HAZ	ARDOUS CHARACTERISTICS	-	PCBs 10 50 PPM Cyanides 17 1 250 P2돼
TI RCRA BEACTIVE	ETIOLOGICAL I EXFLOSIVE/SHOCK SENSITIVE		Cyanides II 250 PPA Phenolics II 50 PPM
U WATER REACTIVE	TSCAREG INONE OF THE ABOVE	L	Sulfides I 500 PPM VOCs I 500PPM
SUBJECT TO SUBPART.	FF BENZENE REG I PYROPHORIC	-	Chlorides II 1000 PPM
through D043)? OY	eristically hazardous for metals or organics (EPA Waste Codes D004 (es O No " constituents and concentrations in section C. "	Section 1 at concentration	aln underlying hazardous constituents as defined in 40 CFR 268 Part 2, ons exceeding the UTS treatment standards? O Yes O No onstituents and concentrations in section C. 4
GENERATOR CERTIFICATI and that all relevant inform	OH: I hereby certify that all Information submitted in this and all other attache tation regarding known or suspected hazards in the possession of the genera	ed documents is complete, cont NOO 11 Secolosed Heen disclosed. If CCUG	ains true and accurate descriptions and is representative of the wasta material, CC discovers, after having taken the delivery of the wasta, that any waste does

not conform to the Identification or descriptions contained in this MPS then CCI/GCC shall provide notice to Generator and coordinate the return of the non conforming waste to the point of origin as set forth in the manifest or to such other locations designated in writing by the Generator agrees to reimburse CCI/GCC for all handling, packaging, cleanup and transportation costs or charges, damage to equipment and

. costs associated with lost time incurred by ECNECC during the receipt, handling, temporary storage and return of such non conforming waste to its point of origin or to such other location design at a by the Generator. I hereby authorize CCNGCC to amend and/or correct any information on the MPS with the full understanding that if any amandment or correction is performed, I will be contacted as such to issue any approval.							
Authorized Sig	gnature			THE HOES/CEIER	<b>ه</b> 	Date0.76	·18
CCI/GCC APPROVAL	Sales Code	Tech Inițiais	Date	Management Initials	Date	Rasidual Wasta I Form Code:	
	· · · · · · · · · · · · · · · · · · ·	* ·			n		,

• • • • •

.

•



Liquid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid/Solid	
Color/Physical ////////////////////////////////////	Is it USEPA haz waste? OYes ONo
Strong Incidental Ador Present? O Vec A Ma	USEPA Haz Codes:
Wastewater: O Wastewater O Non-wastewater % Solid % Sludge	EPA Sub Gategories:
Specific Gravity:	- Is it STATE waste? OYes ONO
Physical State: I Single Phase I Sold I Gas/Aerosol Dumpable? Ø Yes O No	STATE Haz Codes:
Bi-Layared DLiguid DLap Pack Pumpagie: O Yes O No	
Multi-Layered Semi-Solid Pollrable? O Yes O No	DOT Hazardous Material? OYes ONO
	Proper Shipping Name: 20/01/1/1/1/
Flash Point: O Flash Point <74 F O Flash Point 101-140 F O Flash Point >200 F O Exact Flash Point O Flash Point 74-100 F O Flash Point 141-200 F O No Flash Point O Flash Point 74-100 F O Flash Point 141-200 F O No Flash Point	
O Open cup / Closed cup	
Ignitable Solid? O'Yes O'No	RQ: ERG#:
pH: O <2.0 O 2.01-5.0 O 5.01-9.0 O 9.01-12:49 O >12.5 O Exact pH	F OINDAND ALEODIATION
CHEMICAL COMPOSITION	E. SHIPPING INFORMATION
	Shipment Method:
ATTACHMENTS: 🔲 MSDS attached 🔲 Supplemental Analysis 🔲 Additonal Information 🔲 LDR Attachment	O Bulk Liquid - Tanker O Pallel(s) Drum(Size):
Chemical Composition Naximum	O Bulk Solid - Roll Off O Cubic Yard Boals) O Other (Sizo):
4 ⁴	Anticipated Volume: Per Per
(n) (0) (0)	Quantity: Price: / Unit:
JUL SHAF JU IU	
$\frac{1}{1}$	F. SPECIAL HANDLING CONSIDERATIONS
<u> 46000000000000000000000000000000000000</u>	Radioactive Filling
- 1//111/11	Etiologic/Medical Waste DRMS/DRMO Waste Incinerate Only Fuming CERCLA Waste Recycle Only
1 (20)	I PhenolicsI AsbestosI Other:
TRANSFORTER ARRANGEMENTS	
O CGI/GCC Provides Transportation Ø Other:	
O Customer Delivers to CCI/GCC	Indicate if waste contains any of the following:
O Customer Delivers to End Facility via CCI/GCC	- <u>Non-Rea.</u> <u>or Less Than</u> <u>or Actual</u>
OTHER HAZARDOUS CHARACTERISTICS	FCBs 2 50 PPM Cyanides 2 250 PPM
ERCRA REACTIVE	Cyanides 250 PPM Phenolics 7 C1 50 PPM
I WATER REACTIVE IT TSCAREG IN NONE OF THE ABOVE	Sulfides II 500 PPM
RADIOACTIVE OXIDIZING MATL SUBJECT TO SUBPART FF BENZENE REG OPPROPHORIC	VOCS 21 500PPM Chlorides 21 1000 PPM
	ntain underlying hazardous constituents as defined in 40 CFR 268 Part 2,
	HEARD THERE AND CHARACTERIC CONSCILLENCE AS DECIDED IN AN OFFICE 200 PART 2.
through D043)? O Yes O No Section Lat concentra	ations exceeding the UTS treatment standards? O Yes 🖉 No
through D043)? O Yes O No Section Lat concentra	tions exceeding the UTS treatment standards? O Yes O No constituents and concentrations in section C.

not continue to the Identification or descriptions contained in this MPS then CCI/CCC shall provide notice to Generator and coordinate the return of the non contornaing waste to the point of origin as set forth in the manual to environment and coordinate the return of the non contornaing waste to the point of origin as set forth in the manual to environment and coordinate the point of the point of origin as set forth in the manual to environment and coordinate the point of the point of origin as set forth in the manual to environment and coordinate the point of the point of origin as set forth in the manual to environment and coordinate the point of the point

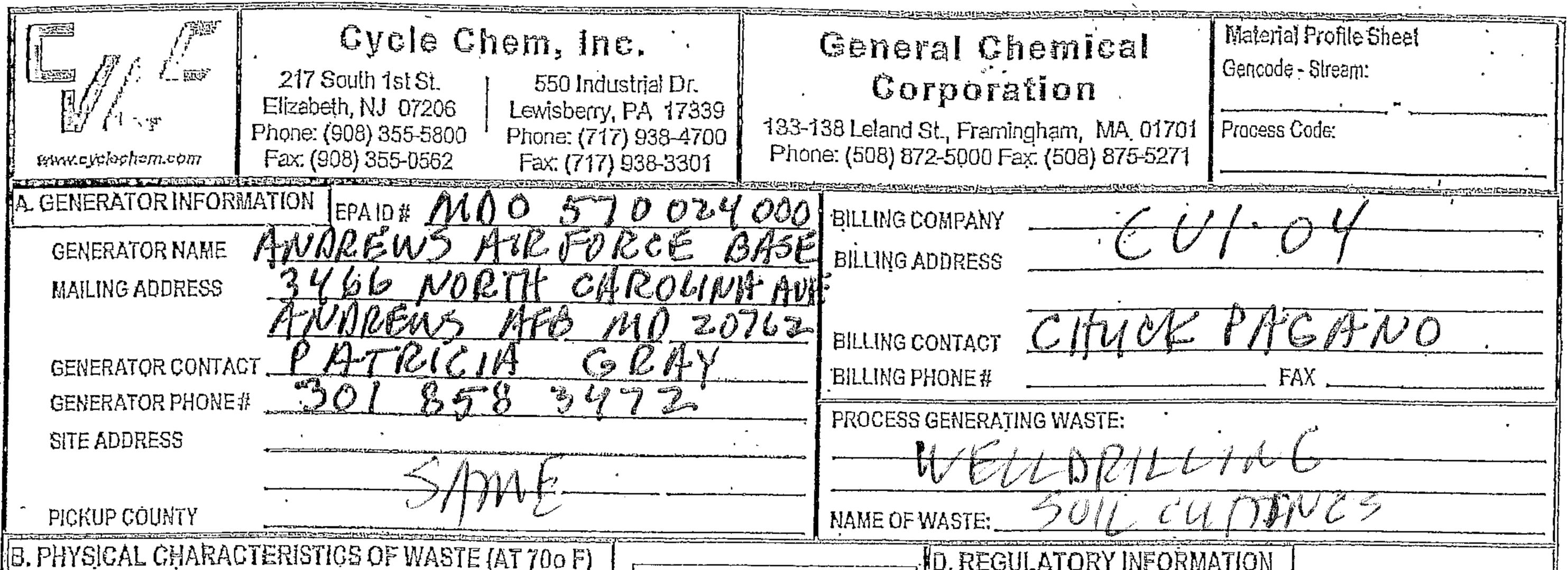
costs associated	with lost time	Incuned by	CONCCC during by the Gener CONCCC during the receip CONCCC any Information o	t handling, temoorary s	lorage and rebu	ច ១ភី សារទទ ១០១ ភេសាភាគ	ing watte to its point	of adala acto su	ch olher location i	estanited by the Ger	t and iorator,
Authorized Sign	R			۲~- 	[	CES/C	EIFR	•	Date	9176	17
CCI/GCC APPROVAL	Sales Co	de	Tech Inițials	Date	······································	Management	nitials	Date	······································	Racidual Wasta / Form Code:	
	•		₽		*	د			·		
• •	<b>T</b> 2	۰.					ર ૨ *				
۰.		• •			-		¢				-

8

.

÷

· ·· · · ·


· · · · ·

..._

.

En la construction de la

.



Liquid/Solid/Sludge	
Color/Physical	Is it USEPA haz waste? OYes ONo
Description: V. IV VVV Suspended Solids % Suspended Solids	USEPA Haz Codes:
Wastewater OWstevaler ONor-wastewater	EPA Sub Gategories:
Specific Gravity:	Is It STATE waste? OYes ONO
Physical State: Single Phase I Sald GastAerosol Dumpable? Over ONO 1	STATE Haz Codes:
Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Pumpable?       O Yes       O No         Ingenetic open         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open         Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open       Ingenetic open         Ingenetic ope	D'OT Hazardous Material? O Yes O No
Flash Point: Q Flash Point <74 F O Flash Point 101-140 F O Flash Point >200 F O Exact Flash Point:	
O Flash Point 74-100 F O Flash Point 141-200 F O No Flash Point O Open cup IO Closed cup	Hazard Class:UN/NA #:P.G,:
Ignifable Solid? O'Yes O No	RQ:
pH: O <2.0 O 2.01.5.0 O 5.01.9.0 O 9.01.12.49 O >12.5 O Exact pH	E. SHIPPING INFORMATION
C. CHEMICAL COMPOSITION	Shipment Method:
ATTACHMENTS: 🔲 MSDS attached 🔲 Supplemental Analysis 🗍 Additonal Information 🎵 LDR Attachment	O Bulk Liquid - Tanker O Palfel(s) O Drum(Size):
Chemical Composition Maximum	O Bulk Solid - Emp Tir O Toto(s) O Bulk Solid - Roll Off O Cubic Yard Bos (s) O Other (Size);
	Anticipated Volume: Per Y/
	Quantity: Price: / Unit:
	F. SPECIAL HANDLING CONSIDERATIONS
2.577167 $100$	Image: Selective   Image: Selective     Image: Selective   Image: Selective
	Etiologic/Medical Waste I DRMS/DRMO Waste I Incinerate Only
	Image:
G. TRANSFORTER ARRANGEMENTS	
	·
O CGI/GCC Provides Transportation O Customer Delivers to CCI/GCC O Customer Delivers to End Facility via CCI/GCC	Indicate if waste contains any of the following:
H. OTHER HAZARDOUS CHARACTERISTICS	PCBs III 50 PPM
	Cyanides II 250 PPSI Phenolics Fi 50 PPM
T WATER REACTIVE TSCA REG	Sulfides I 500 PPAI
I RADIOACTIVE SUBJECT TO SUBPART FF BENZENE REG I PYROPHORIC	VOCs II SOOPPH Chlorides II I 1000 PPM
through D043)? O Yes O No Section 1 at concentratio	ain underlying hazardous constituents as defined in 40 CFR 268 Part 2, ons exceeding the UTS treatment standards? O Yes O No onstituents and concentrations in section C.
GENERATOR CERTIFICATION: I hereby certify that all information submitted in this and all other attached documents is complete, contain and that all relevant information regarding known or suspected hazards in the possession of the generator has been disclosed. If CC/IC/	ins true and accurate descriptions and is reprosentative of the wasta material, CC discovers, after having taken the idelivery of the wasta, that any waste doos

not conform to the identification or descriptions contained in this MPS then CCI/GCC shall provide notice to Generator and coordinate the return of the non-conforming waste to the point of origin as set forth in the manifest or to such other locations designated in writing by the Generator. Generator agrees to reimburse CCI/GCC for all bandling, mackaging, cleanup and transportation costs or charges, damage to equipment and

•

• · · · · · ·

l hereby author	ið with lost time incurred ize CCI/GCC to amend an	by CCUGCC during the receipt dier correct any information on	handling, temporary sto fire MPS with the Full un	nage and return of such non conforming waste to its point of the second return of such non-conforming waste to its point or correction is point or correction is point or correction.	olnt of origin or to such formed, I will be contac	other location designed as such to issue	gnisted by the Generator. e any approval.
Authorized SI	X			_TILE · 11.CES/CEI	ER	Date	1.26.113
CCI/GCC APPROVAL	Sales Coda	Tech Inițials	Date	Management Initials	Date		Rasidual Wasta / Form Code:
	,	• •					

· · ·

۲ (

· ·

- ·· ·· <del>--</del>-·

# Appendix C-5

Photo Log



Photographic Log Phase I Remedial Investigation, December 2012 Joint Base Andrews Naval Air Facility Washington





## Photographic Log Phase I Remedial Investigation, December 2012 Joint Base Andrews Naval Air Facility Washington

			The concernence of the second se
View of:	TMW-07	View of:	TMW-09, TMW-01, TMW-02, TMW-03 (foreground to background)
Facing:		Facing:	West
View of:	TMW-05, TMW-04 (front to back)	View of:	TMW-03
Facing:	West	Facing:	West

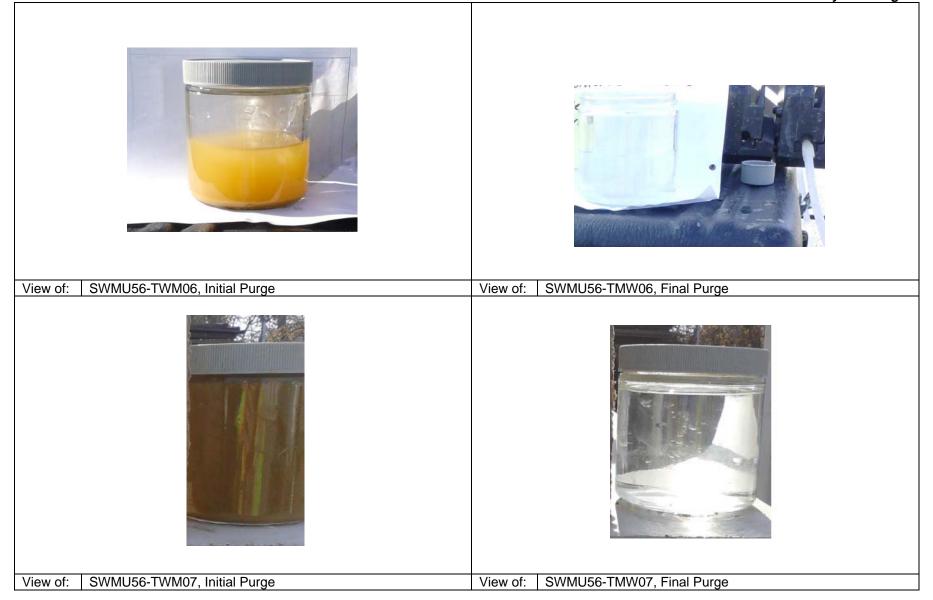


## Photographic Log Phase I Remedial Investigation, December 2012 Joint Base Andrews Naval Air Facility Washington

View di.   Dhilling SVVMOS6-TMW07	View of: Delling SMM IEG TMM/2	View of Dursing SWALLES, TMW00
View of:       SWMU56-TWM01, Initial Purge         View of:       SWMU56-TMW01, Final Purge	View of: Drilling SWMU56-TMW07	View of: Purging SWMU56-TMW09



View of: SWMU56-TWM02, Initial Purge	View of: SWMU56-TMW02, Final Purge
View of: SWMU56-TWM03, Initial Purge	View of: SWMU56-TMW03, Final Purge




Г

View of: SWMU56-TWM04, Initial Purge	View of: SWMU56-TMW04, Final Purge









- E

View of: SWMU56-TWM08, Initial Purge	View of: SWMU56-TMW08, Final Purge
View of: SWMU56-TWM09, Initial Purge	View of: SWMU56-TMW09, Final Purge

# Appendix D

**Data Validation Report** 

## Laboratory Analytical Data Validation

Site:	JBA SWMU 56
Date Completed:	01-11-2013
Submitted by:	Nancy McDonald
Sample Collection Date(s):	12-03-2012 and 12-04-2012
TestAmerica Project Number(s) (LPN):	280-36632-1
Bay West DMS #:	1604991

This data validation memo describes the validation of 6 aqueous samples, 4 soil samples, one Field Blank, one Equipment Blank, and one Trip Blank collected on December 3 and 4, 2012 and analyzed for VOCs (8260B), SVOCs (SW-846 8270C), PAHs (8270-SIM), Organochlorine Pesticides (8081B), PCBs (8082A), Herbicides (8151A), GRO and DRO (8015C), and TAL Metals (6010B, 6020A, 7470A, and 7471B) at TestAmerica Laboratory in Denver, Colorado as sample delivery group (SDG) 280-36632-1. Samples included as part of this validation are listed below:

Sample ID	Date Sampled	TestAmerica, Denver					
		Lab ID	VOC	SVOCs PAHs	Herbicides Pesticides PCBs	DRO / GRO	TAL Metals
SWMU56-SB-01	12/03/2012	36632-1			Х		
SWMU56-SB-02	12/03/2012	36632-2			Х		
SWMU56-SB-03	12/03/2012	36632-3			Х		
SWMU56-SB-04	12/03/2012	36632-4			Х		
SWMU56-TMW07-SO01	12/04/2012	36632-5	Х	Х	Х	Х	Х
SWMU56-TMW06-GW01	12/04/2012	36632-6	Х	Х	Х	Х	Х
SWMU56-TMW08-GW02	12/04/2012	36632-7	Х	Х	Х	Х	Х
SWMU56-TMW07-GW03	12/04/2012	36632-8	Х*	Х*	X*	Х	Х
SWMU56-TMW05-GW04	12/04/2012	36632-9	Х	Х	Х	Х	Х
SWMU56-AQFB01	12/04/2012	36632-10	Х	Х	Х	Х	Х
SWMU56-AQEB01	12/04/2012	36632-11	Х	Х	Х	Х	Х
SWMU56-AQTB01	12/03/2012	36632-12	Х				

* - Sample selected for MS/MSD analysis

Sample ID	Date Sampled				TestAmerica, Denve	r			
		Lab ID	VOC	SVOCs	PAHs	Pesticides, PCBs	Herbicides	DRO/GRO	TAL Metals
SWMU56-SB-01	12/03/2012	36632-1				J: delta-BHC UJ: Toxaphene	UJ: All herbicides		
SWMU56-SB-02	12/03/2012	36632-2				J: delta-BHC J: Heptachlor epoxide J: 4,4'-DDE J: 4,4'-DDT UJ: Toxaphene	UJ: Dinoseb		
SWMU56-SB-03	12/03/2012	36632-3				J: Heptachlor epoxide UJ: Toxaphene	UJ: Dinoseb		
SWMU56-SB-04	12/03/2012	36632-4				UJ: Toxaphene	UJ: Dinoseb		
SWMU56-TMW07-SO01	12/04/2012	36632-5	U: Bromoform			UJ: Toxaphene	UJ: Dinoseb		
SWMU56-TMW06-GW01	12/04/2012	36632-6	U: Methylene chloride	U: bis(2- Ethylhexyl)phthalate	U: Benzo(a)anthracene U: Benzo(b)fluoranthene U: Phenanthrene	UJ: Toxaphene		UJ: GRO	U: Copper
SWMU56-TMW08-GW02	12/04/2012	36632-7			U: Benzo(b)fluoranthene	UJ: Toxaphene			U: Copper U: Zinc
SWMU56-TMW07-GW03	12/04/2012	36632-8			U: Benzo(b)fluoranthene	UJ: Toxaphene	J: MCPP	U: GRO	
SWMU56-TMW05-GW04	12/04/2012	36632-9		U: bis(2- Ethylhexyl)phthalate	J: Anthracene UJ: Benzo(a)anthracene J: Benzo(b)fluoranthene J: Benzo(k)fluoranthene UJ: Benzo(a)pyrene J: Benzo(g,h,i)perylene UJ: Chrysene J: Chrysene UJ: Chrysene J: Dibenz(a,h)anthracene UJ: Fluoranthene J: Indeno(1,2,3-cd)pyrene J: Naphthalene	UJ: Toxaphene	J: MCPP	UJ: GRO	U: Copper

The Data Qualification Summary Table below summarizes the qualifications that were applied during validation:

Sample ID	Date Sampled			Т	estAmerica, Denve	r		
					UJ: Phenanthrene UJ: Pyrene			
SWMU56-AQFB01	12/04/2012	36632-10	U: Methylene chloride	UJ: 2,4-Dichlorophenol UJ: 2,4-Dimethylphenol UJ: 2,4-Dinitrophenol UJ: 2,6-Dichlorophenol UJ: 4,6-Dinitro-2- methylphenol UJ: 4-Chloro-3- methylphenol UJ: 2-Chlorophenol UJ: 2-Chlorophenol UJ: 2-Nethylphenol UJ: 2-Nitrophenol UJ: 2-Nitrophenol UJ: 2-Nitrophenol	U: Benzo(a)anthracene U: Benzo(b)fluoranthene U: Benzo(k)fluoranthene U: Benzo(g,h,i)perylene U: Chrysene U: Fluoranthene U: Phenanthrene	UJ: Toxaphene		
				UJ: 2,4,5-Trichlorophenol UJ: 2,4,6-Trichlorophenol				
SWMU56-AQEB01	12/04/2012	36632-11	U: Methylene chloride		U: Benzo(a)anthracene U: Benzo(b)fluoranthene U: Benzo(g,h,i)perylene U: Chrysene	UJ: Toxaphene		
SWMU56-AQTB01	12/03/2012	36632-12	U: Methylene chloride					

Validation was conducted according to this hierarchy of validation guidance: USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data June 2005 (USACE, 2005), DoD Quality Systems Manual for Environmental Laboratories, v 4.2, October 2010 (DoD, 2010), USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010). The QAPP and analytical methods were consulted during the data validation.

A Level II ADR was also performed on this data and the qualifiers summary report is included in Attachment 1. Target analytes present between the LOQ and MDL were flagged "J" as estimated. In addition, detected pesticide results were qualified "J" as estimated and non-detected results were qualified "R" as rejected in sample SWMU56-SB04. This sample was analyzed at a 20-fold dilution, so no qualifications were applied, because of low surrogate recoveries.

### Data Validation Detail:

### • Data Package Completeness

The Level IV data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the method. The data package is complete.

## Laboratory Case Narrative/Cooler Receipt Form

No anomalies were noted on the chain-of-custody (CoC) or cooler receipt forms that affected data quality. The laboratory case narrative was accurate and complete and documented that a revised CoC was received from Bay West requesting SVOC analysis plus TICs for selected samples and updated sample IDs.

## • Holding Times, Storage, and Preservation

Review of the sample collection and analysis dates involved comparing the CoCs, the summary forms, and the data report for holding time compliance.

All samples were received correctly, intact and properly preserved with one exception. One of the 1 liter amber bottles for sample SWMU56-TMW07-GW03 was received at the laboratory broken. Sufficient volume remained to proceed with the requested analyses. All samples were prepared and analyzed within the turnaround time required by the project except for the following. SVOC sample SWMU56-AQFB01 was originally extracted within the 7-day holding time; however, the sample was re-extracted outside the holding time due to low surrogate recoveries. PAH sample SWMU56-TMW05-GW04 was originally extracted within the 7-day holding time, but was re-extracted outside holding time due to a high surrogate recovery. No action was required, because the original results were reported in the validated results tables.

### Instrument Performance Check

The instruments met all applicable performance check requirements. The instrument performance check included verification of 4-Bromofluorobenzene (BFB) tunes for VOC

and Decafluorotriphenylphosphine (DFTPP) for PAHs and SVOCs. All samples were analyzed within 12 hours of the BFB and DFTPP tunes.

## • Initial Calibration (ICAL) / Initial Calibration Verification (ICV)

ICAL and ICV acceptance criteria were met for all parameters except for the following.

**Pesticide**: In the ICAL (12/14/2012),  $R^2$  for 4,4'-DDD (0.989) was below the criterion of 0.990 on column CLP2. No action was required, because  $R^2$  met the criterion on column CLP1. In the ICVs (11/15/2012 and 12/12/2012), % differences for several peaks exceeded the criterion of 15% on both columns with low bias. Toxaphene results were qualified "UJ" as estimated in all samples.

## • Continuing Calibration Verification (CCV)

CCV acceptance criteria were met for all parameters with the following exception:

**VOCs:** In the CCV (12/07/2012 18:31), % Differences for Chloroethane (23.1%) and Chloromethane (23.3%) were high and outside acceptance criteria of  $\leq$  20%. No qualifications were required, because of potential high bias and the associated samples were non-detect for Chloroethane and Chloromethane.

**Pesticides**: CCV (12/17/2012 21:41) % differences for several Toxaphene peaks were outside acceptance criteria of  $\leq$  15% on both columns. Toxaphene results were qualified "UJ" as estimated in samples SWMU56-SB01, SWMU56-SB02, SWMU56-SB03, and SWMU56-SB04. In the CCVs (12/18/2012 16:14 and 19:17), % differences for 4,4'-DDD were high and outside acceptance criteria of  $\leq$  15% on column CLP2. No action was required, because the % differences met criteria on column CLP1.

## • Pesticide Performance Evaluation Mixture (PEM)

In the Pesticide analysis, the % breakdown met the acceptance criterion of 15%.

## • CRQL Check Standard

All acceptance criteria were met for the CRQL Check Standards.

## • Interference Check Standard

The Interference Check Standards met method and DoD QSM acceptance criteria except for the following. The Cadmium and/or Nickel results were greater than the LOD in analytical batches 280-151248 and 280-152050. The laboratory flagged the associated results "Q", as required by DoD QSM. The validator removed the "Q" flag, because the vendor confirmed that Cadmium and Nickel are trace impurities in the ICSA solution.

## • Method Blank, Field Blank, Equipment Blank, and Trip Blank

Target analytes were not detected above ½ the Limit of Quantitation (LOQ) in the Method Blanks. However, the following anomalies were noted:

Method Blank ID	Analyte	Result	LOQ
151194/1-A	Bromoform	0.423 ug/kg	5.0 ug/kg
151466/6	1,2,3-Trichlorobenzene	0.252 ug/L	1.0 ug/L
	Methylene chloride	0.704 ug/L	5.0 ug/L
	Naphthalene	0.268 ug/L	1.0 ug/L

**VOCs**: Low-level concentrations of analytes  $< \frac{1}{2}$  the LOQs were detected in the Method Blanks as follows:

Results for Bromoform in sample SWMU56-TMW07-SO01 and Methylene Chloride in samples SWMU56-TMW06-GW01, SWMU56-AQFB01, SWMU56-AQEB01, and SWMU56-AQTB01 were qualified "U" and raised to the LOQ, because the results were < five times the blank concentrations. No further action was required, because 1,2,3-Trichlorobenzene and Naphthalene results were non-detect in the associated samples.

Blank ID	Analyte	Result (ug/L)	LOQ (ug/L)
MB 150870/1-A	Benzo(a)anthracene	0.0340	0.10
	Benzo(b)fluoranthene	0.0159	0.10
	Benzo(k)fluoranthene	0.0153	0.10
	Benzo(a)pyrene	0.0104	0.10
	Benzo(g,h,i)perylene	0.00518	0.10
	Chrysene	0.0354	0.10
	Fluoranthene	0.0300	0.15
	Phenanthrene	0.0119	0.10
	Pyrene	0.0341	0.10
MB 152138/2-A	Naphthalene	0.008332	0.10

**PAHs**: Low-level concentrations of the following analytes were detected at concentrations  $< \frac{1}{2}$  the LOQs in the aqueous Method Blanks:

The following results were qualified "U" and raised to the LOQ (as appropriate), because the results were < five times the blank concentration: Benzo(a)anthracene, Benzo(b)fluoranthene, and Phenanthrene in sample SWMU56-TMW06-GW01; Benzo(b)fluoranthene in samples SWMU56-TMW08-GW02 and SWMU56-TMW07-GW03; Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Fluoranthene, Phenanthrene, and Pyrene in sample SWMU56-TMW05-GW04; Benzo(a)anthracene; Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Fluoranthene, and Phenanthrene in sample SWMU56-AQFB01; and Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, and Chrysene in sample SWMU56-AQEB01. No further action was required, because results from the reextraction and reanalysis of sample SWMU56-TMW05-GW04 associated with Method Blank MB 152138/2-A were not reported. **Metals**: Low-level concentrations of Barium (0.725 ug/L) and Zinc (2.16 ug/L), < ½ the LOQs, were detected in Method Blank 151248/1-A. The result for Zinc in sample SWMU56-TMW08-GW02 was qualified "U" and raised to the LOQ, because the result was < five times the blank concentration. No further action was required, because Zinc results in all associated samples were > five times the blank concentration.

### **Equipment Blank and Trip Blank:**

*VOCs*: Low-level concentrations of Acetone, Chlorodibromomethane, and/or Dibromomethane were detected in the equipment blank and trip blank samples. No action was warranted, because associated sample results were non-detect.

**SVOCs**: Low-level concentration of bis(2-Ethylhexyl)phthalate (2.1 ug/L) and Phenol (2.9 ug/L) were detected in the equipment blank sample SWMU56-AQEB01. Results for bis(2-Ethylhexyl)phthalate in samples SWMU56-TMW06-GW01 and SWMU56-TMW05-GW04 were qualified "U" and raised to the LOQ, because the results were < five times the equipment blank concentration. No further action was required, because Phenol was non-detect in the associated samples.

**GRO**: A low-level concentration of GRO, < ½ the LOQ, was detected in equipment blank sample SWMU56-AQEB01 (0.017 mg/L). GRO results were flagged "U" and raised to the LOQ in samples SWMU56-TMW06-GW01, SWMU56-TMW07-GW03, and SWMU56-TMW05-GW04, because the results were < five times the equipment blank concentration.

Blank ID	Analyte	Result (ug/L)
SWMU56-AQEB01	Calcium	47
	Copper	0.89 J
	Manganese	0.42 J

*Metals*: The following metals were detected in the Equipment Blank Sample:

Results for Copper were qualified "U" in samples SWMU56-TMW06-GW01, SWMU56-TMW08-GW02, and SWMU56-TMW05-GW04, because the results were < five times the equipment blank concentration. No further qualification was required, because Calcium and Manganese results were > five times the equipment blank concentrations.

**Field Blank**: Acetone, Chlorodibromomethane, Chloroform, Dibromomethane, Benzyl Alcohol, Naphthalene, GRO, DRO, Aluminum, Barium, Calcium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Sodium, and Zinc were detected in Field Blank sample SWMU56-AQFB01. No qualifications were applied based on the field blank contamination.

## • Surrogate Spikes

Surrogates were added to all samples and QC samples as required by the analytical method. All surrogate recoveries met the required QC criteria except for the following.

**SVOCs**: Recoveries for surrogates 2-Fluorophenol (7%) and Phenol-d5 (5%) in sample SWMU56-AQFB01 were biased low and outside criteria of 20-110% and 10-115%,

respectively. Therefore, associated SVOC results were qualified "UJ" as estimated in sample SWMU56-AQFB01.

<b>PAHs</b> : The following Terphenyl-d14 recoveries were biased high and outside
acceptance criteria.

Sample	Surrogate	%R	Criteria
SWMU56-TMW06-GW01	Terphenyl-d14	206	47-120
SWMU56-TMW05-GW04	Terphenyl-d14	150	47-120
Method Blank 150870/1-A	Terphenyl-d14	167	47-120
LCSD 150870/19-A	Terphenyl-d14	173	47-120
SWMU56-TMW07-GW03 MS	Terphenyl-d14	155	47-120

Sample SWMU56-TMW05-GW04 was re-extracted and reanalyzed and all surrogate recoveries met acceptance criteria. Associated results from the original analysis were reported, because of the exceeded holding time and qualified "J" as estimated and may be biased high in sample SWMU56-TMW05-GW04. No qualification was required for sample SWMU56-TMW06-GW01, because the surrogate recovery was high and associated sample results were non-detect. No further action was required, because the Method Blank was non-detect and all LCSD recoveries met acceptance criteria.

**GRO**: Recoveries for surrogate a,a,a-Trifluorotoluene in samples SWMU56-TMW06-GW01 (128%) and SWMU56-TMW05-GW04 (152%) were biased high and outside criteria of 82-110%. GRO results in samples SWMU56-TMW06-GW01 and SWMU56-TMW05-GW04 were qualified "J" as estimated and may be biased high. An overall qualifier of "UJ" was applied, because these results were previously qualified due to equipment blank contamination.

**Pesticides**: The recovery for surrogate Tetrachloro-m-Xylene (294%) on the back column was biased high and outside criteria of 70-125% in sample SWMU56-SB01. No action was required, because the recovery met criteria on the front column. In addition, surrogates were diluted out in sample SWMU56-SB04. No action was required due to this irregularity.

**Herbicides**: Recoveries for surrogate 2,4-Dichlorophenylacetic acid (DCPA) of 25% and 16% were biased low and outside criteria of 31-105% in sample SWMU56-SB01 on both GC columns. All herbicide results were qualified "UJ" as estimated in sample SWMU56-SB01. In addition, the DCPA recovery of 126% in sample SWMU56-SB02 was biased high and outside criteria on column DB35MS. No action was required, because no herbicides were detected in this sample and the surrogate met criteria on the other column.

## • Matrix Spike/Matrix Spike Duplicates (MS/MSD)

**VOCs**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria except for the following. The MSD recovery for 1,1-Dichloroethene of 132% was biased high and outside criteria of 70-130%. No action was required, because 1,1-Dichloroethene was non-detect in the parent sample.

**SVOCs**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria.

**PAHs**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria.

**GRO/DRO**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria.

**Pesticides/PCBs**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria.

**Herbicides**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria except for the following. MSD recoveries for 2,4,5-T (114%) and Dinoseb (99%) were biased high and outside criteria of 35-110% and 20-95%, respectively. No qualification was required, because 2,4,5-T and Dinoseb were non-detect in the parent sample.

**Metals**: MS/MSD analyses were performed on sample SWMU56-TMW07-GW03. All recoveries and RPDs were within acceptance criteria.

## • Laboratory Control Sample (LCS)

All LCS recoveries were within the QAPP and the DoD QSM 4.2 acceptance criteria except for the following. In the herbicide analysis, LCS and LCSD recoveries for Dinoseb (8% and 6%) were biased low and outside QC limits of 5-166% in Preparation Batch 150882. Dinoseb results were qualified "UJ" as estimated and may be biased low in samples SWMU56-SB01, SWMU56-SB02, SWMU56-SB03, SWMU56-SB04, and SWMU56-TMW07-SO01. LCS recoveries for 2,4,5-T (115%) and 2,4-D (116%) were biased high and outside criteria of 35-110% and 35-115%, respectively, in Preparation Blank 150843. LCS recoveries for 2,4,5-T (101%) and 2,4-D (102%) were biased high and outside criteria of 24-98% and 32-97%, respectively, in Preparation Batch 150882. No qualification was required, because 2,4,5-T and 2,4-D were non-detect in the associated samples.

## • ICP Serial Dilution (Dilution Test) and Post-Digestion Spikes

All ICP Serial Dilution % differences and Post Digestion Spike (PDS) recoveries were with acceptance criteria.

## • Blind Field Duplicates

Blind field duplicates were not included in this SDG.

## • Internal Standards

All QC criteria were met for Internal Standards (IS) in all calibrations and all field samples.

## Target Analyte Identification and Quantitation

Target compound identification followed the specific analytical Method. Retention times and Mass Spectra were consistent with the analytical standards. Appropriate wavelengths were chosen for the metals analysis in addition to appropriate interelement correction factors.

In the pesticide analysis, samples SWMU56-SB02, SWMU56-SB03, and SWMU56-SB04 required Florisil cleanup to reduce matrix interference. In addition, RPDs between the primary and confirmation column exceed the QC control limit of  $\leq$  40% as follows.

	Sample	Analyte	RPD
--	--------	---------	-----

SWMU56-SB01	delta-BHC	190.1
SWMU56-SB02	delta-BHC	166.1
	Heptachlor epoxide	94.4
	4,4'-DDE	109.2
	4,4'-DDT	132.4
SWMU56-SB03	Heptachlor epoxide	123.1

Results for delta-BHC in sample SWMU56-SB01; delta-BHC, Heptachlor epoxide, 4,4'-DDE, and 4,4'-DDT SWMU56-SB02; and Heptachlor epoxide in sample SWMU56-SB03 were flagged "J" as estimated in accordance with DoD QSM 4.2.

In the PCB analysis, all samples required a Florisil cleanup to reduce matrix interference.

In the herbicide analysis, the RPDs between columns of 55.9% and 57.7% for MCPP exceeded criteria of  $\leq$  40% in samples SWMU56-TMW07-GW03 and SWMU56-TMW05-GW04. The MCPP result was flagged "J" as estimated in samples SWMU56-TMW07-GW03 and SWMU56-TMW05-GW04.

Non-detected results were reported to the Limit of Detection (LOD) in accordance with DoD QSM 4.2. The laboratory also reported the LOQ for each analyte on the sample result sheet (Form 1). The laboratory reported target analytes, which were qualitatively identified at concentrations below the LOQs, with a "J" qualifier to indicate that the result is estimated as required by DoD QSM 4.2. The "J" qualifier was retained by the validator. In general, the LOQs reported are consistent with the LOQs listed in the QAPP.

Sample dilutions were not required except for the following. Pesticide sample SWMU56-SB04 was analyzed at a 20-fold dilution, because of high target compound concentrations.

## • Tentatively Identified Compounds (TICs)

In the VOC and SVOC analyses, TICs were reported for all field samples. Siloxanes were detected in some samples. All siloxane results were qualified "R" as rejected, because siloxanes are considered common laboratory contaminants.

## **Overall Evaluation**

A number of results were qualified as estimated as a result of ICAL, ICV, CCV, and surrogate performance, blank contamination, high RPDs between columns. In addition, TICs reported as siloxanes were rejected. All other validation elements were acceptable and the data, as qualified, with the exception of the TICs is acceptable for its intended use.

Based on the criteria presented above, it is recommended that the results reported for these analyses be accepted a qualified. MS/MSD and LCS/LCSD and surrogate recoveries demonstrated that acceptable levels of accuracy and precision were achieved. In addition, completeness, defined to be the percentage of analytical results to be valid, including estimated values was 99% (excluding TIC values rejected) for this Sample Delivery Group.

## **Data Validation Qualifiers**

Validation Qualifier	Definition
J	The reported positive result is considered estimated, because the result is less than the LOQ or because certain quality control criteria were not met.
U	The analyte was not detected and is reported as less than the LOD or as defined by the client.
UJ	The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.
R	The result for this analyte is unusable. The analyte may or may not be present.

## References

USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data, June 2005. (USACE, 2005).

U.S. Department of Defense (DoD). DoD Quality Systems Manual for Environmental Laboratories, Version 4.2, October, 2010. (DoD, 2010).

U.S. Environmental Protection Agency (USEPA). USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June, 2008. (USEPA, 2008).

USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010).

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW07-SO01	Collected: 12/4/2012 8:50:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
CALCIUM	57000	J	18000	LOD	92000	LOQ	ug/Kg	J	RI		
POTASSIUM	89000	J	46000	LOD	280000	LOQ	ug/Kg	J	RI		

## Method Category: METALS

Sample ID: SWMU56-AQEB01	Collec	ted: 12/4/2	012 2:30	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CALCIUM	47	J	80	LOD	1000	LOQ	ug/L	J	RI	
Sample ID: SWMU56-AQFB01	Collec	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	18	J	30	LOD	300	LOQ	ug/L	J	RI	
IRON	68	J	30	LOD	100	LOQ	ug/L	J	RI	
POTASSIUM	2100	J	250	LOD	3000	LOQ	ug/L	J	RI	
SODIUM	2100	J	250	LOD	5000	LOQ	ug/L	J	RI	
Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
POTASSIUM	1900	J	250	LOD	3000	LOQ	ug/L	J	RI	
Sample ID: SWMU56-TMW06-GW01	Collec	ted: 12/3/2	012 2:10	:00 A	nalysis T	' 'ype: Initia	al/TOT	I	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
POTASSIUM	1400	J	250	LOD	3000	LOQ	ug/L	J	RI	
Sample ID: SWMU56-TMW07-GW03	Collec	ted: 12/4/2	012 12:1	5:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	180	J	30	LOD	300	LOQ	ug/L	J	RI	
POTASSIUM	1500	J	250	LOD	3000	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB 2/15/2013 7:38:25 AM ADR version 1.7.0.207

### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW08-GW02	Collected: 12/4/2012 11:20:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
POTASSIUM	1200	J	250	LOD	3000	LOQ	ug/L	J	RI		
SODIUM	3800	J	250	LOD	5000	LOQ	ug/L	J	RI		

## Method Category: METALS

Sample ID: SWMU56-TMW07-SO01	Collec	ted: 12/4/2	012 8:50	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	25	J	65	LOD	100	LOQ	ug/Kg	J	RI	
CADMIUM	38	JQ	25	LOD	100	LOQ	ug/Kg	J	RI	
COPPER	1000	J	200	LOD	2500	LOQ	ug/Kg	J	RI	
MOLYBDENUM	97	J	50	LOD	200	LOQ	ug/Kg	J	RI	
NICKEL	320	JQ	75	LOD	350	LOQ	ug/Kg	J	RI	
SELENIUM	260	J	250	LOD	500	LOQ	ug/Kg	J	RI	
THALLIUM	47	J	10	LOD	100	LOQ	ug/Kg	J	RI	
ZINC	580	J	900	LOD	2500	LOQ	ug/Kg	J	RI	

## Method Category: METALS

Sample ID: SWMU56-AQEB01	Collected: 12/4/2012 2:30:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
COPPER	0.89	J	1.5	LOD	2.0	LOQ	ug/L	J	RI		
MANGANESE	0.42	J	0.90	LOD	3.5	LOQ	ug/L	J	RI		

Sample ID: SWMU56-AQFB01	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
COBALT	0.062	J	0.10	LOD	1.0	LOQ	ug/L	J	RI	
MANGANESE	2.9	J	0.90	LOD	3.5	LOQ	ug/L	J	RI	
NICKEL	2.4	J	0.90	LOD	3.0	LOQ	ug/L	J	RI	

### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30	:00 A	nalysis T	ype: Initia	al/TOT	I	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	0.68	J	1.0	LOD	5.0	LOQ	ug/L	J	RI	
BERYLLIUM	0.32	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.39	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	3.1	J	1.5	LOD	10	LOQ	ug/L	J	RI	
LEAD	0.86	J	0.50	LOD	3.0	LOQ	ug/L	J	RI	
MOLYBDENUM	0.31	J	0.40	LOD	2.0	LOQ	ug/L	J	RI	
SELENIUM	0.99	J	2.0	LOD	5.0	LOQ	ug/L	J	RI	
THALLIUM	0.091	J	0.10	LOD	1.0	LOQ	ug/L	J	RI	
VANADIUM	1.5	J	1.0	LOD	6.0	LOQ	ug/L	J	RI	
ZINC	13	J	6.0	LOD	20	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW06-GW01	Collected: 12/3/2012 2:10:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	0.25	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.48	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	2.0	J	1.5	LOD	10	LOQ	ug/L	J	RI	
LEAD	0.75	J	0.50	LOD	3.0	LOQ	ug/L	J	RI	
MOLYBDENUM	0.33	J	0.40	LOD	2.0	LOQ	ug/L	J	RI	
THALLIUM	0.080	J	0.10	LOD	1.0	LOQ	ug/L	J	RI	
VANADIUM	0.77	J	1.0	LOD	6.0	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW07-GW03	Collec	Collected: 12/4/2012 12:15:00 Analysis Type: Initial/TOT									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BERYLLIUM	0.18	J	0.24	LOD	1.0	LOQ	ug/L	J	RI		
CADMIUM	0.43	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI		
CHROMIUM	2.6	J	1.5	LOD	10	LOQ	ug/L	J	RI		
LEAD	0.34	J	0.50	LOD	3.0	LOQ	ug/L	J	RI		
MOLYBDENUM	0.24	J	0.40	LOD	2.0	LOQ	ug/L	J	RI		
ZINC	16	J	6.0	LOD	20	LOQ	ug/L	J	RI		

### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW08-GW02	Collec	ted: 12/4/2	012 11:2	0:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	0.41	J	1.0	LOD	5.0	LOQ	ug/L	J	RI	
BERYLLIUM	0.15	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.15	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	2.8	J	1.5	LOD	10	LOQ	ug/L	J	RI	
LEAD	0.23	J	0.50	LOD	3.0	LOQ	ug/L	J	RI	
MOLYBDENUM	0.46	J	0.40	LOD	2.0	LOQ	ug/L	J	RI	
VANADIUM	1.2	J	1.0	LOD	6.0	LOQ	ug/L	J	RI	
ZINC	8.6	J	6.0	LOD	20	LOQ	ug/L	U	Mb	

Method Category: METALS

Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.065	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	

Method Category: SVOA

Sample ID: SWMU56-TMW07-SO01	Collected: 12/4/2012 8:50:00 Analysis Type: Initial/TOT								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIESEL RANGE ORGANICS	1600	J	2100	LOD	4200	LOQ	ug/Kg	J	RI

Method Category: **SVOA** 

Sample ID: SWMU56-AQFB01	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
DIESEL RANGE ORGANICS	91	JM	100	LOD	250	LOQ	ug/L	J	RI		

* denotes a non-reportable result Project Name and Number: Joint Andrews AFB - Joint Andrews AFB 2/15/2013 7:38:25 AM

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-SB02	Collec	ted: 12/3/2	012 10:3	0:00 A	:00 Analysis Type: Initial/TOT-				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
DELTA-BHC	0.51	J	0.79	LOD	1.9	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-SB03	Collec	ted: 12/3/2	012 10:4	5:00 <mark>A</mark>	nalysis T	ype: Initia	al/TOT-		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDT	0.99	J	0.73	LOD	2.1	LOQ	ug/Kg	J	RI		
HEPTACHLOR	0.47	J	0.48	LOD	1.8	LOQ	ug/Kg	J	RI		
HEPTACHLOR EPOXIDE	0.56	J	0.73	LOD	1.8	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-SB04	Collec	ted: 12/3/2	012 11:0	0:00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 20		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDD	65	QD	15	LOD	37	LOQ	ug/Kg	J	Surr, Surr		
4,4'-DDE	27	JQD	10	LOD	37	LOQ	ug/Kg	J	RI, Surr, Surr		
4,4'-DDT	41	JQD	15	LOD	44	LOQ	ug/Kg	J	RI, Surr, Surr		
ALDRIN	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ALPHA-BHC	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ALPHA-CHLORDANE	300	QD	10	LOD	37	LOQ	ug/Kg	J	Surr, Surr		
BETA-BHC	15	UQ	15	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
DELTA-BHC	15	UQ	15	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
DIELDRIN	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ENDOSULFAN I	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ENDOSULFAN II	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ENDOSULFAN SULFATE	6.7	JQD	10	LOD	37	LOQ	ug/Kg	J	RI, Surr, Surr		
ENDRIN	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ENDRIN ALDEHYDE	10	UQ	10	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
ENDRIN KETONE	15	UQ	15	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
gamma-BHC (Lindane)	15	UQ	15	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
GAMMA-CHLORDANE	420	QD	15	LOD	37	LOQ	ug/Kg	J	Surr, Surr		
HEPTACHLOR	14	JQD	10	LOD	37	LOQ	ug/Kg	J	RI, Surr, Surr		
HEPTACHLOR EPOXIDE	15	UQ	15	LOD	37	LOQ	ug/Kg	R	Surr, Surr		
METHOXYCHLOR	15	UQ	15	LOD	73	LOQ	ug/Kg	R	Surr, Surr		
TOXAPHENE	590	UQ	590	LOD	3700	LOQ	ug/Kg	R	Surr, Surr		

### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-SB01	Collec	ted: 12/3/2	012 10:1	5:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,4,5-T	6.5	UQ	6.5	LOD	24	LOQ	ug/Kg	UJ	Surr	
2,4,5-TP(Silvex)	6.5	UQ	6.5	LOD	24	LOQ	ug/Kg	UJ	Surr	
2,4-D	22	UQ	22	LOD	95	LOQ	ug/Kg	UJ	Surr	
2,4-DB	6.5	UQ	6.5	LOD	95	LOQ	ug/Kg	UJ	Surr	
DALAPON	6.5	UQ	6.5	LOD	48	LOQ	ug/Kg	UJ	Surr	
DICAMBA	6.5	UQM	6.5	LOD	48	LOQ	ug/Kg	UJ	Surr	
DICHLOROPROP	6.5	UQ	6.5	LOD	95	LOQ	ug/Kg	UJ	Surr	
DINOSEB	6.5	UQ	6.5	LOD	14	LOQ	ug/Kg	UJ	Lcs, Surr	
МСРА	5500	UQ	5500	LOD	9500	LOQ	ug/Kg	UJ	Surr	
MCPP	5500	UQ	5500	LOD	9500	LOQ	ug/Kg	UJ	Surr	
Sample ID: SWMU56-SB02	Collected: 12/3/2012 10:30:00 Analysis Type: Initial/TOT- Dilution:									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DINOSEB	6.3	UQ	6.3	LOD	14	LOQ	ug/Kg	UJ	Lcs	
Sample ID: SWMU56-SB03	Collec	ted: 12/3/2	012 10:4	5:00 A	nalvsis T	ype: Initia	al/TOT-		Dilution: 5	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DINOSEB	29	U	29	LOD	63	LOQ	ug/Kg	UJ	Lcs	
Sample ID: SWMU56-SB04	Collec	ted: 12/3/2	012 11:0	):00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DINOSEB	6.1	U	6.1	LOD	13	LOQ	ug/Kg	UJ	Lcs	
Sample ID: SWMU56-TMW07-SO01	Collec	ted: 12/4/2	012 8:50	00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DINOSEB	5.6	U	5.6	LOD	12	LOQ	ug/Kg	UJ	Lcs	

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MCPP	33	J	88	LOD	380	LOQ	ug/L	J	RI	
Sample ID: SWMU56-TMW07-GW03	Collec	ted: 12/4/2	012 12:1	5:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
МСРР	35	J	100	LOD	430	LOQ	ug/L	J	RI	

Method Category: SVOA

Sample ID: SWMU56-AQEB01	Collected: 12/4/2012 2:30:00 Analysis Type: Initial/TOT-								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BIS(2-ETHYLHEXYL)PHTHALATE	2.1	J	0.98	LOD	9.8	LOQ	ug/L	J	RI		
PHENOL	2.9	J	4.9	LOD	9.8	LOQ	ug/L	J	RI		

Sample ID: SWMU56-AQFB01	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT-ACID L									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,4,5-TRICHLOROPHENOL	1.0	U	1.0	LOD	21	LOQ	ug/L	UJ	Surr	
2,4,6-TRICHLOROPHENOL	1.0	U	1.0	LOD	21	LOQ	ug/L	UJ	Surr	
2,4-DICHLOROPHENOL	2.1	UQ	2.1	LOD	10	LOQ	ug/L	UJ	Surr	
2,4-DIMETHYLPHENOL	4.2	UQ	4.2	LOD	10	LOQ	ug/L	UJ	Surr	
2,4-DINITROPHENOL	21	U	21	LOD	84	LOQ	ug/L	UJ	Surr	
2,6-DICHLOROPHENOL	4.2	U	4.2	LOD	10	LOQ	ug/L	UJ	Surr	
2-CHLOROPHENOL	4.2	UQ	4.2	LOD	10	LOQ	ug/L	UJ	Surr	
2-METHYLPHENOL	4.2	UQ	4.2	LOD	10	LOQ	ug/L	UJ	Surr	
2-NITROPHENOL	1.0	UQ	1.0	LOD	21	LOQ	ug/L	UJ	Surr	
4,6-DINITRO-2-METHYLPHENOL	10	U	10	LOD	84	LOQ	ug/L	UJ	Surr	
4-CHLORO-3-METHYLPHENOL	5.2	U	5.2	LOD	21	LOQ	ug/L	UJ	Surr	
4-NITROPHENOL	10	U	10	LOD	52	LOQ	ug/L	UJ	Surr	
BENZOIC ACID	52	UQ	52	LOD	84	LOQ	ug/L	UJ	Surr	
BENZYL ALCOHOL	1.7	J	1.0	LOD	26	LOQ	ug/L	J	RI	
BIS(2-ETHYLHEXYL)PHTHALATE	7.2	J	1.0	LOD	10	LOQ	ug/L	J	RI	
Butylbenzylphthalate	19	J	4.2	LOD	21	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-AQFB01	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT-ACID Dilutio										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
PENTACHLOROPHENOL	42	U	42	LOD	84	LOQ	ug/L	UJ	Surr		
PHENOL	5.2	UQ	5.2	LOD	10	LOQ	ug/L	UJ	Surr		
Sample ID: SWMU56-TMW05-GW04	Collected: 12/4/2012 3:30:00 Analysis Type: Initial/TOT- Dilution: 1										
	Lab	Lab		DL		RL		Data Review	Reason		
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code		
Analyte BIS(2-ETHYLHEXYL)PHTHALATE	Result           2.2	<b>Qual</b>	<b>DL</b> 0.98	Type	<b>RL</b> 9.8	Type	Units ug/L	Qual	Code Rl		

Sample ID. Swiii030-Tiilwoo-GwoT	Analysis Type. Initial ToT-								Bildton.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BIS(2-ETHYLHEXYL)PHTHALATE	2.1	J	0.98	LOD	9.8	LOQ	ug/L	J	RI		
Diethylphthalate	0.53	J	0.98	LOD	20	LOQ	ug/L	J	RI		

Method Category: SVOA

Sample ID: SWMU56-AQEB01	Collec	ted: 12/4/2	012 2:30:	al/TOT- Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.0052	J	0.0095	LOD	0.095	LOQ	ug/L	U	Mb
BENZO(B)FLUORANTHENE	0.0037	J	0.0095	LOD	0.095	LOQ	ug/L	U	Mb
BENZO(G,H,I)PERYLENE	0.0042	J	0.0095	LOD	0.095	LOQ	ug/L	U	Mb
CHRYSENE	0.0036	J	0.0095	LOD	0.095	LOQ	ug/L	U	Mb

Sample ID: SWMU56-AQFB01	Collec	ted: 12/3/2	012 3:15:	00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	0.0096	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
BENZO(B)FLUORANTHENE	0.0061	JM	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
BENZO(G,H,I)PERYLENE	0.0069	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
BENZO(K)FLUORANTHENE	0.0051	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
CHRYSENE	0.0073	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
FLUORANTHENE	0.0063	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
NAPHTHALENE	0.012	J	0.010	LOD	0.10	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-AQFB01	Collec	ted: 12/3/2	012 3:15:	:00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PHENANTHRENE	0.019	J	0.012	LOD	0.10	LOQ	ug/L	U	Mb	
Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30:	:00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTHRACENE	0.029	J	0.019	LOD	0.095	LOQ	ug/L	J	RI, Surr	
BENZO(A)ANTHRACENE	0.11	Q	0.0095	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	
BENZO(A)PYRENE	0.043	JMQ	0.0095	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	
BENZO(B)FLUORANTHENE	0.17	Q	0.0095	LOD	0.095	LOQ	ug/L	J	Surr	
BENZO(G,H,I)PERYLENE	0.15	Q	0.0095	LOD	0.095	LOQ	ug/L	J	Surr	
BENZO(K)FLUORANTHENE	0.17	Q	0.0095	LOD	0.095	LOQ	ug/L	J	Surr	
CHRYSENE	0.17	Q	0.0095	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	
DIBENZO(A,H)ANTHRACENE	0.16	Q	0.0095	LOD	0.095	LOQ	ug/L	J	Surr	
FLUORANTHENE	0.14		0.0095	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	
INDENO(1,2,3-CD)PYRENE	0.17	MQ	0.019	LOD	0.095	LOQ	ug/L	J	Surr	
NAPHTHALENE	0.0075	J	0.0095	LOD	0.095	LOQ	ug/L	J	RI, Surr	
PHENANTHRENE	0.055	J	0.011	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	
PYRENE	0.10		0.0095	LOD	0.095	LOQ	ug/L	UJ	Mb, Surr	

Sample ID: SWMU56-TMW05-GW04	Collec	ted: 12/4/2	012 3:30:	00 A	Analysis Type: Reanalysis-01/TOT- Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORANTHENE	0.0096	JH	0.010	LOD	0.10	LOQ	ug/L	J	RI	
NAPHTHALENE	0.010	JH	0.010	LOD	0.10	LOQ	ug/L	U	Mb	
PHENANTHRENE	0.011	JH	0.012	LOD	0.10	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW06-GW01	Collec	Collected: 12/3/2012 2:10:00 Analysis						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	0.0033	JQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	
BENZO(B)FLUORANTHENE	0.0036	JQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	
NAPHTHALENE	0.021	J	0.010	LOD	0.10	LOQ	ug/L	J	RI, Surr	
PHENANTHRENE	0.015	J	0.012	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW07-GW03	Collec	ted: 12/4/2	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.0041	JM	0.011	LOD	0.11	LOQ	ug/L	U	Mb
NAPHTHALENE	0.0079	J	0.011	LOD	0.11	LOQ	ug/L	J	RI

Sample ID: SWMU56-TMW08-GW02	Collec	nalysis T	ype: Initia	al/TOT-	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.0035	J	0.010	LOD	0.10	LOQ	ug/L	U	Mb
NAPHTHALENE	0.016	J	0.010	LOD	0.10	LOQ	ug/L	J	RI

## Method Category: VOA

Sample ID: SWMU56-TMW07-SO01	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
GASOLINE RANGE ORGANICS	370	J	610	LOD	1400	LOQ	ug/Kg	J	RI

## Method Category: VOA

Sample ID: SWMU56-AQEB01	Collec	Collected: 12/4/2012 2:30:00 Analys					al/TOT	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	17	J	20	LOD	25	LOQ	ug/L	J	RI		
Sample ID: SWMU56-AQFB01	Collec	Collected: 12/3/2012 3:15:00 Analysis Type: Initial/TOT									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	11	J	20	LOD	25	LOQ	ug/L	J	RI		
Sample ID: SWMU56-TMW05-GW04	Collec	Collected: 12/4/2012 3:30:00 Analysis Type: Initial/TOT Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	17	JQ	20	LOD	25	LOQ	ug/L		RI, Surr		

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-TMW06-GW01	Collec	ted: 12/3/2	012 2:10	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
GASOLINE RANGE ORGANICS	13	JQ	20	LOD	25	LOQ	ug/L	J	RI, Surr	
Sample ID: SWMU56-TMW07-GW03	Collec	Collected: 12/4/2012 12:15:00 Analysis Type: Initial/TOT						T Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
GASOLINE RANGE ORGANICS	12	J	20	LOD	25	LOQ	ug/L	J	RI	

Method Category: VOA

Sample ID: SWMU56-TMW07-SO01	Collec	ted: 12/4/2	012 8:50	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOFORM	0.42	J	0.88	LOD	5.5	LOQ	ug/Kg	U	Mb	

Method Category: VOA

Sample ID: SWMU56-AQEB01	Collected: 12/4/2012 2:30:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ACETONE	2.9	J	6.4	LOD	10	LOQ	ug/L	J	RI		
METHYLENE CHLORIDE	2.6	J	0.40	LOD	5.0	LOQ	ug/L	J	RI		

Sample ID: SWMU56-AQFB01	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	2.4	J	6.4	LOD	10	LOQ	ug/L	J	RI
BROMOFORM	0.33	J	0.40	LOD	1.0	LOQ	ug/L	J	RI
DIBROMOCHLOROMETHANE	0.76	J	0.40	LOD	1.0	LOQ	ug/L	J	RI
METHYLENE CHLORIDE	0.33	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb

#### Lab Reporting Batch ID: 280-36632-1

#### Laboratory: TAL DEN

EDD Filename: 280-36632-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-AQTB01	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	2.8	J	6.4	LOD	10	LOQ	ug/L	J	RI
METHYLENE CHLORIDE	0.43	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb

Sample ID: SWMU56-TMW05-GW04	Collec	Collected: 12/4/2012 3:30:00 Analysis T							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,1-DICHLOROETHANE	0.21	J	0.20	LOD	1.0	LOQ	ug/L	J	RI		
1,1-DICHLOROETHENE	0.53	J	0.20	LOD	1.0	LOQ	ug/L	J	RI, Ms		
CHLOROFORM	0.38	J	0.20	LOD	1.0	LOQ	ug/L	J	RI		

Sample ID: SWMU56-TMW06-GW01	Collec	ted: 12/3/2	012 2:10	:00 A	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.30	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
CHLOROFORM	0.81	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
METHYLENE CHLORIDE	0.39	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb

Sample ID: SWMU56-TMW07-GW03	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLOROFORM	0.33	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.31	J	0.20	LOD	1.0	LOQ	ug/L	J	RI

# Lab Reporting Batch ID: 280-36632-1 EDD Filename: 280-36632-1_BayWest

Laboratory: TAL DEN

eQAPP Name: Bay West-Joint Base Andrews_20130129

# **Reason Code Legend**

Reason Code	Description
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Upper Estimation
Mb	Method Blank Contamination
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Lower Rejection
Surr	Surrogate/Tracer Recovery Upper Estimation

# Laboratory Analytical Data Validation

Site:	JBA SWMU 56
Date Completed:	01-10-2013
Submitted by:	Nancy McDonald
Sample Collection Date(s):	12-05-2012
TestAmerica Project Number(s) (LPN):	280-36669-1
Bay West DMS #:	1605405

This data validation memo describes the validation of 4 aqueous samples, 3 soil samples, and one Trip Blank collected on December 5, 2012 and analyzed for VOCs (8260B), SVOCs (8270C), PAHs (8270-SIM), Organochlorine Pesticides (8081B), PCBs (8082A), Herbicides (8151A), GRO and DRO (8015C), and TAL Metals (6010B, 6020A, 7470A, and 7471B) at TestAmerica Laboratory in Denver, Colorado as sample delivery group (SDG) 280-36669-1. Samples included as part of this validation are listed below:

Sample ID	Date Sampled			TestAme	rica, Denve	er	
		Lab ID	VOC	SVOCs PAHs	Herbicides Pesticides PCBs	DRO / GRO	TAL Metals
SWMU56-TMW06-SO02	12/05/2012	36669-1	Х	Х	X*	Х	Х
SWMU56-TMW06-SO03	12/05/2012	36669-2	Х	Х	Х	Х	Х
SWMU56-TMW08-SO04	12/05/2012	36669-3	Х	Х	Х	Х	Х
SWMU56-TMW01-GW05	12/05/2012	36669-4	Х	Х	Х	Х	Х
SWMU56-TMW01-GW06	12/05/2012	36669-5	X‡	X‡	X‡	X‡	X‡
SWMU56-TMW09-GW07	12/05/2012	36669-6	Х	Х	Х	Х	Х
SWMU56-TMW02-GW08	12/05/2012	36669-7	Х	Х	Х	Х	Х
SWMU56-AQTB02	12/05/2012	36669-8TB	Х				

[‡] - Duplicate sample of SWMU56-TMW01-GW05

* - Pesticide sample selected for MS/MSD analysis.

Sample ID	Date Sampled			Te	stAmerica, Denver				
		Lab ID	VOC	SVOCs	PAHs	Pesticides, PCBs	Herbicides	DRO/GRO	TAL Metals
SWMU56-TMW06-SO02	12/05/2012	36669-1	U: Bromoform			UJ: Toxaphene	UJ: Dinoseb		
SWMU56-TMW06-SO03	12/05/2012	36669-2	U: Bromoform			UJ: Toxaphene	UJ: Dinoseb		
SWMU56-TMW08-SO04	12/05/2012	36669-3	U: Bromoform			UJ: Toxaphene	UJ: Dinoseb		
SWMU56-TMW01-GW05	12/05/2012	36669-4			UJ: Benzo(a)anthracene UJ: Benzo(b)fluoranthene UJ: Chrysene J: Naphthalene	UJ: Toxaphene		UJ: GRO	U: Copper U: Zinc J: Iron
SWMU56-TMW01-GW06	12/05/2012	36669-5			UJ: Benzo(a)anthracene U:J Benzo(b)fluoranthene UJ: Benzo(g,h,i)perylene UJ: Chrysene J: Naphthalene	UJ: Toxaphene		UJ: GRO	U: Copper U: Zinc J: Iron
SWMU56-TMW09-GW07	12/05/2012	36669-6		U: bis(2- Ethylhexyl)phthalate	U: Benzo(a)anthracene U: Benzo(b)fluoranthene U: Benzo(g,h,i)perylene U: Chrysene	UJ: Toxaphene		UJ: GRO	
SWMU56-TMW02-GW08	12/05/2012	36669-7	U: Acetone		U: Benzo(a)anthracene U: Benzo(b)fluoranthene U: Benzo(g,h,i)perylene	UJ: Toxaphene		UJ: GRO	
SWMU56-AQTB02	12/05/2012	36669-8TB							

The Data Qualification Summary Table below summarizes the qualifications that were applied during validation:

Validation was conducted according to this hierarchy of validation guidance: USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data June 2005 (USACE, 2005), DoD Quality Systems Manual for Environmental Laboratories, v 4.2, October 2010 (DoD, 2010), USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010). The QAPP and analytical methods were consulted during the data validation.

A Level II ADR was also performed on this data and the qualifiers summary report is included in Attachment 1. Target analytes present between the LOQ and MDL were flagged "J" as estimated. Field duplicate results for Benzo(g,h,i)perylene, Chromium, Lead, Molybdenum were also qualified "J" as estimated by ADR; however, the validator only calculated RPDs when both the parent and field duplicates results were  $\geq$  the LOQs.

## Data Validation Detail:

### • Data Package Completeness

The Level IV data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the method. The data package is complete.

#### Laboratory Case Narrative/Cooler Receipt Form

No anomalies were noted on the chain-of-custody (CoC) or cooler receipt forms that affected data quality. The laboratory case narrative was accurate and complete and documented that a revised CoC was received from Bay West requesting SVOC analysis plus TICs for selected samples and updated sample IDs. In addition, the relinquished by information was not completed on the CoC. Custody of samples was maintained at all times, so data quality was not affected. In addition, the case narrative documented that sample SWMU56-TMW02-GW08 formed an emulsion during the extraction process for PAHs, pesticides, PCBs, herbicides, and DRO. The emulsion was broken up by pour backs and/or centrifuge.

## • Holding Times, Storage, and Preservation

Review of the sample collection and analysis dates involved comparing the CoCs, the summary forms, and the data report for holding time compliance.

All samples were received correctly, intact and properly preserved. All samples were prepared and analyzed within the turnaround time required by the project.

#### • Instrument Performance Check

The instruments met all applicable performance check requirements. The instrument performance check included verification of 4-Bromofluorobenzene (BFB) tunes for VOC and Decafluorotriphenylphosphine (DFTPP) for PAHs and SVOCs. All samples were analyzed within 12 hours of the BFB and DFTPP tunes.

# • Initial Calibration (ICAL) / Initial Calibration Verification (ICV)

ICAL and ICV acceptance criteria were met for all parameters except for the following.

**Pesticide**: In the ICV (11/15/2012), % differences for several peaks exceeded the criterion of 15% on both columns with low bias. Toxaphene results were qualified "UJ" as estimated in all samples.

# • Continuing Calibration Verification (CCV)

CCV acceptance criteria were met for all parameters with the following exceptions:

**VOCs:** In the CCV (12/11/2012 08:56), % Differences for Chloroethane (23.1%) and Chloromethane (23.3%) were high and outside acceptance criteria of  $\leq$  20%. No qualifications were required, because of potential high bias and the associated samples were non-detect for Chloroethane and Chloromethane.

**Pesticides**: In CCVs [12/17/2012 (14:14) and 12/18/2012 (00:11 and 03:47)], % differences for one Toxaphene peak were outside acceptance criteria of  $\leq$  15% on one or both columns with low bias. Toxaphene results were qualified "UJ" as estimated in samples SWMU56-TMW06-SO02, SWMU56-TMW06-SO03, and SWMU56-TMW08-SO04. In the CCV (12/12/2012 09:02), the %D for a single Toxaphene peak was outside criteria with high bias on one column. No action was required, because the % difference met criteria on column CLP1. In the CCV (12/18/2012 15:58), the % difference for 4,4'-DDD was outside on column CLP2. No action was required, because the % difference met criteria on column CLP1.

**Herbicides**: In the CCV (12/18/2012 19:54), % differences for 2,4,5-T (24.4%) and 2,4-DB (25.2%) on column DB35MW and 2,4,5-T (21.%) on column DB-XLB were outside criteria of  $\leq$  20% with high bias. No action was required, because these compounds were non-detect in the associated samples.

## • Pesticide Performance Evaluation Mixture (PEM)

In the Pesticide analysis, the % breakdown met the acceptance criterion of 15%.

## • CRQL Check Standard

All acceptance criteria were met for the CRQL Check Standards.

## • Interference Check Standard

The Interference Check Standards met method and DoD QSM acceptance criteria except for the following. The Cadmium and/or Nickel results were greater than the LOD in analytical batches 280-151248 and 280-152050. The laboratory flagged the associated results "Q", as required by DoD QSM. The validator removed the "Q" flag, because the vendor confirmed that Cadmium and Nickel are trace impurities in the ICSA solution.

## • Method Blank and Trip Blank

Target analytes were not detected above ½ the Limit of Quantitation (LOQ) in the Method Blanks. However, the following anomalies were noted:

**VOCs**: A low-level concentration of Bromoform (0.423 ug/kg), < ½ the LOQ of 5.0 ug/kg, was detected in the Method Blank151194/1-A. Results for Bromoform in sample SWMU56-TMW06-SO02, SWMU56-TMW06-SO03, and SWMU56-TMW08-SO04 were qualified "U" and raised to the LOQ, because the results were < five times the blank concentration.

Blank ID	Analyte	Result (ug/L)	LOQ (ug/L)
MB 150870/1-A	Benzo(a)anthracene	0.0340	0.10
	Benzo(b)fluoranthene	0.0159	0.10
	Benzo(k)fluoranthene	0.0153	0.10
	Benzo(a)pyrene	0.0104	0.10
	Benzo(g,h,i)perylene	0.00518	0.10
	Chrysene	0.0354	0.10
	Fluoranthene	0.0300	0.15
	Phenanthrene	0.0119	0.10
	Pyrene	0.0341	0.10

**PAHs**: Low-level concentrations of the following analytes were detected at concentrations  $< \frac{1}{2}$  the LOQs in the aqueous Method Blank:

The following results were qualified "U" and raised to the LOQ (as appropriate), because the results were < five times the blank concentration: Benzo(a)anthracene, Benzo(b)fluoranthene, and Chrysene in samples SWMU56-TMW01-GW05; Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, and Chrysene in samples SWMU56-TMW01-GW06 and SWMU56-TMW09-GW07; and Benzo(a)anthracene, Benzo(b)fluoranthene, and Benzo(g,h,i)perylene in sample SWMU56-TMW02-GW08. No further action was required, because the remaining PAHs were non-detect or > five times the blank concentrations.

**Metals**: Low-level concentrations of Barium (0.725 ug/L) and Zinc (2.16 ug/L), < ½ the LOQs, were detected in Method Blank 151248/1-A. The result for Zinc in sample SWMU56-TMW01-GW05 and SWMU56-TMW01-GW06 were qualified "U" and raised to the LOQ, because the results were < five times the blank concentration. No further action was required, because Zinc results in all associated samples were > five times the blank concentration.

## Equipment Blank and Trip Blank:

*VOCs*: A low-level concentration of Acetone (2.9 ug/L) was detected in the equipment blank sample (from SDG 36632). The Acetone in sample SWMU56-TMW02-GW08 was qualified "U" and raised to the LOQ, because the result was < five times the blank concentration. No target VOCs were detected in Trip Blank sample SWMU56-AQTB02.

**SVOCs**: Low-level concentrations of bis(2-Ethylhexyl)phthalate (2.1 ug/L) and Phenol (2.9 ug/L) were detected in the equipment blank sample SWMU56-AQEB01 (from SDG 36632). The bis(2-Ethylhexyl)phthalate result for in sample SWMU56-TMW09-GW07

was qualified "U" and raised to the LOQ, because the result was < five times the equipment blank concentration. No further action was required, because Phenol was non-detect in the associated samples.

*GRO*: A low-level concentration of GRO, < ½ the LOQ, was detected in equipment blank sample SWMU56-AQEB01 (0.017 mg/L). GRO results were flagged "U" and raised to the LOQ in samples SWMU56-TMW01-GW05, SWMU56-TMW01-GW06, SWMU56-TMW09-GW07, and SWMU56-TMW02-GW08 because the results were < five times the equipment blank concentration.

*Metals*: The following metals were detected in the Equipment Blank Sample:

Blank ID	Analyte	Result (ug/L)
SWMU56-AQEB01	Calcium	47
	Copper	0.89 J
	Manganese	0.42 J

Results for Copper were qualified "U" in samples SWMU56-TMW01-GW05 and SWMU56-TMW01-GW06, because the results were < five times the equipment blank concentration. No further qualification was required, because Calcium and Manganese results were > five times the equipment blank concentrations.

**Field Blank**: Acetone, Chlorodibromomethane, Chloroform, Dibromomethane, Benzyl Alcohol, Naphthalene, Phenanthrene, GRO, DRO, Aluminum, Barium, Calcium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Sodium, and Zinc were detected in Field Blank sample SWMU56-AQFB01 (from SDG 36632). No qualification was applied based on the field blank contamination.

## • Surrogate Spikes

Surrogates were added to all samples and QC samples as required by the analytical method. All surrogate recoveries met the required QC criteria except for the following.

**PAHs**: The following Terphenyl-d14 recoveries were biased high and outside acceptance criteria.

Sample	Surrogate	%R	Criteria
SWMU56-TMW01-GW05	Terphenyl-d14	193	47-120
SWMU56-TMW01-GW06	Terphenyl-d14	181	47-120
Method Blank 150870/1-A	Terphenyl-d14	167	47-120
LCSD 150870/19-A	Terphenyl-d14	173	47-120

No qualification was required for samples SWMU56-TMW01-GW05 and SWMU56-TMW01-GW06 and Method Blank 150870/1-A, because all detected results were less than the reporting limits. No qualification was required based on the high surrogate recovery in the LCSD, because all LCSD recoveries were within QC limits.

**GRO**: Recoveries for surrogate a,a,a-Trifluorotoluene in samples SWMU56-TMW01-GW05 (120%), SWMU56-TMW01-GW06 (122%), and SWMU56-TMW09-GW07 (116%) were biased high and outside criteria of 82-110%. GRO results in samples SWMU56-TMW01-GW05, SWMU56-TMW01-GW06, and SWMU56-TMW09-GW07 were qualified

"J" as estimated and may be biased high. An overall qualifier of "UJ" was applied, because these results were previously qualified due to equipment blank contamination.

**DRO**: The recovery for surrogate o-Terphenyl of 116% was biased high and outside QC limits of 50-115% in sample SWMU56-TMW09-GW07. No qualification was required, because DRO was non-detect in this sample.

### • Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS/MSD analyses were performed on pesticide sample SWMU56-TMW06-SO02. All recoveries and RPDs were within acceptance criteria. No other MS/MSD analyses were performed for the other methods; however, the MS/MSD frequency of one per 20 samples (per matrix) was met for SWMU 56 samples.

## • Laboratory Control Sample (LCS)

All LCS recoveries were within the QAPP and the DoD QSM 4.2 acceptance criteria except for the following. In the herbicide analysis, LCS and LCSD recoveries for Dinsoseb (8% and 6%) were biased low and outside QC limits of 5-166%. LCS recoveries for 2,4,5-T (101%) and 2,4-D (102%) were biased high and outside criteria of 24-98% and 32-97%, respectively, in Preparation Batch 150882. Dinoseb results were qualified "UJ" as estimated and may be biased low in samples SWMU56-TMW06-SO02, SWMU56-TMW06-SO03, and SWMU56-TMW08-SO04. No further qualification was required, because 2,4,5-T and 2,4-D were non-detect in the associated samples. LCS recoveries for 2,4,5-T (147%), 2,4-D (146%), Dicamba (125%), Dichlorprop (129%), Dinoseb (121%), and 2,4,5-TP (Silvex) (144%) in Preparation Batch 151123. No qualification was required, because these compounds were non-detect in the associated samples.

## • ICP Serial Dilution (Dilution Test) and Post-Digestion Spikes

All ICP Serial Dilution % differences and Post Digestion Spike (PDS) recoveries were with acceptance criteria. However, the results were reported in SDG 36632.

#### • Blind Field Duplicates

Blind field duplicates, SWMU56-TMW01-GW05 and SWMU56-TMW01-GW06, were analyzed for VOCs, SVOCs, PAHs, GRO, DRO, pesticides, PCBs, herbicides, and metals. All RPDs were within the field criteria of  $\leq$  20% for metals and  $\leq$  30% for all other parameters except for the following. The RPD for Iron (29.7%) exceeded the criteria. Iron results were qualified "J" as estimated in samples SWMU56-TMW01-GW05 and SWMU56-TMW01-GW06. RPDs are not calculated unless both the parent and duplicate results are  $\geq$  the LOQ.

## • Internal Standards

All QC criteria were met for Internal Standards (IS) in all calibrations and all field samples.

## • Target Analyte Identification and Quantitation

Target compound identification followed the specific analytical Method. Retention times and Mass Spectra were consistent with the analytical standards. Appropriate

wavelengths were chosen for the metals analysis in addition to appropriate interelement correction factors.

Non-detected results were reported to the Limit of Detection (LOD) in accordance with DoD QSM 4.2. The laboratory also reported the LOQ for each analyte on the sample result sheet (Form 1). The laboratory reported target analytes, which were qualitatively identified at concentrations below the LOQs, with a "J" qualifier to indicate that the result is estimated as required by DoD QSM 4.2. The "J" qualifier was retained by the validator. In general, the LOQs reported are consistent with the LOQs listed in the QAPP and sample dilutions were not required.

• Tentatively Identified Compounds (TICs)

In the VOC and SVOC analyses, TICs were reported for all field samples. Siloxanes were detected in one VOC sample. All siloxane results were qualified "R" as rejected, because siloxanes are considered common laboratory contaminants. In addition, an unknown peak at RT 2.91 minutes was detected in some SVOC samples. The same peak was detected in the method blank, so the results were qualified "R" as rejected.

## **Overall Evaluation**

A number of results were qualified as estimated as a result of ICV, CCV, and surrogate performance, blank contamination, and a high RPD in the field duplicate pair. In addition, TICs reported as siloxanes and an unknown at RT 2.91 minutes were rejected. All other validation elements were acceptable and the data, as qualified, with the exception of the TICs is acceptable for its intended use.

Based on the criteria presented above, it is recommended that the results reported for these analyses be accepted a qualified. MS/MSD and LCS/LCSD and surrogate recoveries demonstrated that acceptable levels of accuracy and precision were achieved. In addition, completeness, defined to be the percentage of analytical results to be valid, including estimated values was 99% (excluding TIC values rejected) for this Sample Delivery Group.

# **Data Validation Qualifiers**

Validation Qualifier	Definition
L	The reported positive result is considered estimated, because the result is less than the LOQ or because certain quality control criteria were not met.
U	The analyte was not detected and is reported as less than the LOD or as defined by the client.
UJ	The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.
R	The result for this analyte is unusable. The analyte may or may not be present.

# References

USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data, June 2005. (USACE, 2005).

U.S. Department of Defense (DoD). DoD Quality Systems Manual for Environmental Laboratories, Version 4.2, October, 2010. (DoD, 2010).

U.S. Environmental Protection Agency (USEPA). USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June, 2008. (USEPA, 2008).

USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010).

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW06-SO03	Collected: 12/5/2012 11:55:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
CALCIUM	29000	J	20000	LOD	100000	LOQ	ug/Kg	J	RI		
POTASSIUM	220000	J	50000	LOD	300000	LOQ	ug/Kg	J	RI		

Sample 12. Swiii050-1 iiiw000-3004	Conec	Conected. 12/5/2012 2:45:00 Analysis Type. Initial TOT							Dilution.		
	Lab	Lab		DL		RL		Data Review	Reason		
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code		
POTASSIUM	68000	J	48000	LOD	290000	LOQ	ug/Kg	J	RI		

Method Category: METALS

Sample ID: SWMU56-TMW01-GW05	Collec	Collected: 12/5/2012 8:45:00 Analys						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	160	J	30	LOD	300	LOQ	ug/L	J	RI, Fd	
IRON	1200		30	LOD	100	LOQ	ug/L	J	Fd	
POTASSIUM	870	J	250	LOD	3000	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW01-GW06	Collected: 12/5/2012 8:50:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	73	J	30	LOD	300	LOQ	ug/L	J	RI, Fd	
IRON	890		30	LOD	100	LOQ	ug/L	J	Fd	
POTASSIUM	870	J	250	LOD	3000	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW02-GW08	Collected: 12/5/2012 2:10:00 Analysis Type: Initial/TOT						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	3700	J	250	LOD	5000	LOQ	ug/L	J	RI

Sample ID: SWMU56-TMW09-GW07	MU56-TMW09-GW07 Collected: 12/5/2012 9:50:00 Analysis Type: Initial/							/TOT Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	110	J	30	LOD	300	LOQ	ug/L	J	RI	
POTASSIUM	750	J	250	LOD	3000	LOQ	ug/L	J	RI	

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	012 11:3	3:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SILVER	34	J	59	LOD	98	LOQ	ug/Kg	J	RI	
Sample ID: SWMU56-TMW06-SO03	Collec	ted: 12/5/2	012 11:5	5:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	410	J	140	LOD	480	LOQ	ug/Kg	J	RI	
BERYLLIUM	53	J	62	LOD	96	LOQ	ug/Kg	J	RI	
CADMIUM	65	JQ	24	LOD	96	LOQ	ug/Kg	J	RI	
COPPER	1500	J	190	LOD	2400	LOQ	ug/Kg	J	RI	
MOLYBDENUM	110	J	48	LOD	190	LOQ	ug/Kg	J	RI	
SELENIUM	310	J	240	LOD	480	LOQ	ug/Kg	J	RI	
THALLIUM	42	J	9.6	LOD	96	LOQ	ug/Kg	J	RI	
ZINC	960	J	860	LOD	2400	LOQ	ug/Kg	J	RI	

Sample ID: SWMU56-TMW08-SO04	Collec	ted: 12/5/2	012 2:45	00 A	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BERYLLIUM	36	J	63	LOD	97	LOQ	ug/Kg	J	RI
CADMIUM	29	JQ	24	LOD	97	LOQ	ug/Kg	J	RI
COPPER	2000	J	190	LOD	2400	LOQ	ug/Kg	J	RI
SELENIUM	170	J	240	LOD	490	LOQ	ug/Kg	J	RI
THALLIUM	11	J	9.7	LOD	97	LOQ	ug/Kg	J	RI
ZINC	2100	J	870	LOD	2400	LOQ	ug/Kg	J	RI

# Method Category: METALS

Sample ID: SWMU56-TMW01-GW05	Collec	ted: 12/5/2	012 8:45	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	0.087	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.25	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	2.7	J	1.5	LOD	10	LOQ	ug/L	J	RI, Fd	
COPPER	1.7	J	1.5	LOD	2.0	LOQ	ug/L	J	RI	
LEAD	0.22	J	0.50	LOD	3.0	LOQ	ug/L	J	RI, Fd	

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36669-1

# Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW01-GW05	Collected: 12/5/2012 8:45:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.48	J	0.40	LOD	2.0	LOQ	ug/L	J	RI, Fd	
ZINC	6.5	J	6.0	LOD	20	LOQ	ug/L	U	Mb	

Sample ID: SWMU56-TMW01-GW06	Collec	ted: 12/5/2	012 8:50:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	0.098	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.26	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	1.7	J	1.5	LOD	10	LOQ	ug/L	J	RI, Fd	
COPPER	1.4	J	1.5	LOD	2.0	LOQ	ug/L	J	RI	
LEAD	0.50	U	0.50	LOD	3.0	LOQ	ug/L	UJ	Fd	
MOLYBDENUM	0.25	J	0.40	LOD	2.0	LOQ	ug/L	J	RI, Fd	
ZINC	7.5	J	6.0	LOD	20	LOQ	ug/L	U	Mb	

Sample ID: SWMU56-TMW02-GW08	Collec	Collected: 12/5/2012 2:10:00 Analysis Type: Initial/TOT								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	3.0	J	2.0	LOD	5.0	LOQ	ug/L	J	RI	
SILVER	0.36	J	0.10	LOD	5.0	LOQ	ug/L	J	RI	
Sample ID: SWMU56-TMW09-GW07	Collec	ted: 12/5/2	012 9:50	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT		Dilution: 1	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BERYLLIUM	0.085	J	0.24	LOD	1.0	LOQ	ug/L	J	RI
CADMIUM	0.14	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI
CHROMIUM	1.6	J	1.5	LOD	10	LOQ	ug/L	J	RI
LEAD	2.0	J	0.50	LOD	3.0	LOQ	ug/L	J	RI
MOLYBDENUM	0.19	J	0.40	LOD	2.0	LOQ	ug/L	J	RI

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW02-GW08	Collected: 12/5/2012 2:10:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.15	J	0.080	LOD	0.20	LOQ	ug/L	J	RI		

# Method Category: METALS

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	11	J	17	LOD	22	LOQ	ug/Kg	J	RI

# Method Category: SVOA

Sample ID: SWMU56-TMW06-SO03	Collec	ted: 12/5/2	012 11:5	5:00 A	nalysis T	<i>ype:</i> Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIESEL RANGE ORGANICS	1100	J	2200	LOD	4300	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW08-SO04	Collec	ted: 12/5/2	012 2:45	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIESEL RANGE ORGANICS	2000	J	2000	LOD	4100	LOQ	ug/Kg	J	RI

## Method Category: SVOA

Sample ID: SWMU56-TMW06-SO02	Collec	Collected: 12/5/2012 11:33:00 Analysis Type: Initial/TOT- Dilution:										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
DINOSEB	6.3	U	6.3	LOD	14	LOQ	ug/Kg	UJ	Lcs			
Sample ID: SWMU56-TMW06-SO03	Collec	ted: 12/5/2	012 11:5	5:00 A	nalysis 1	<i>ype:</i> Initia	al/TOT-	I	Dilution: 1			
		Lab		DL		RL		Data Review	Reason			
Analyte	Lab Result	Lab Qual	DL	Type	RL	Туре	Units	Qual	Code			

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW08-SO04	Collected: 12/5/2012 2:45:00 Analysis Type: Initial/TOT-								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
DINOSEB	5.7	U	5.7	LOD	12	LOQ	ug/Kg	UJ	Lcs		

# Method Category: SVOA

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	012 11:3	3:00 A	nalysis T	ype: Initia	al/TOT-	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZYL ALCOHOL	42	J	38	LOD	380	LOQ	ug/Kg	J	RI	
Sample ID: SWMU56-TMW06-SO03	Collec	Collected: 12/5/2012 11:55:00 Analysis Type: Initial/TOT-								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZYL ALCOHOL	27	J	35	LOD	350	LOQ	ug/Kg	J	RI	
Sample ID: SWMU56-TMW08-SO04	Collec	ted: 12/5/2	012 2:45	:00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZYL ALCOHOL	22	J	34	LOD	340	LOQ	ug/Kg	J	RI	

# Method Category: SVOA

Sample ID: SWMU56-TMW09-GW07	Collected: 12/5/2012 9:50:00 Analysis Type: Initial/TOT-							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BIS(2-ETHYLHEXYL)PHTHALATE	2.1	J	0.96	LOD	9.6	LOQ	ug/L	J	RI	

# Method Category: SVOA

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	al/TOT-	Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACENAPHTHYLENE	1.0	J	0.77	LOD	5.8	LOQ	ug/Kg	J	RI

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

# EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	012 11:3	3:00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	1.9	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
BENZO(A)PYRENE	2.2	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
BENZO(B)FLUORANTHENE	5.3	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
BENZO(G,H,I)PERYLENE	4.0	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
BENZO(K)FLUORANTHENE	1.5	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
CHRYSENE	3.7	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
FLUORANTHENE	3.5	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
INDENO(1,2,3-CD)PYRENE	3.1	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
NAPHTHALENE	1.2	J	0.77	LOD	5.8	LOQ	ug/Kg	J	RI	
PHENANTHRENE	2.1	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	
PYRENE	4.0	J	2.9	LOD	5.8	LOQ	ug/Kg	J	RI	

# Method Category: SVOA

Sample ID: SWMU56-TMW01-GW05	Collec	ted: 12/5/2	012 8:45:	00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	0.0052	JQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	
BENZO(B)FLUORANTHENE	0.0041	JQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	
BENZO(G,H,I)PERYLENE	0.010	UQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Fd	
CHRYSENE	0.0038	JQ	0.010	LOD	0.10	LOQ	ug/L	UJ	Mb, Surr	
NAPHTHALENE	0.0072	J	0.010	LOD	0.10	LOQ	ug/L	J	RI, Surr	

Sample ID: SWMU56-TMW01-GW06	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.0047	JQ	0.0099	LOD	0.099	LOQ	ug/L	UJ	Mb, Surr
BENZO(B)FLUORANTHENE	0.0041	JQ	0.0099	LOD	0.099	LOQ	ug/L	UJ	Mb, Surr
BENZO(G,H,I)PERYLENE	0.0043	JQ	0.0099	LOD	0.099	LOQ	ug/L	UJ	Mb, Surr, Fd
CHRYSENE	0.0036	JQ	0.0099	LOD	0.099	LOQ	ug/L	UJ	Mb, Surr
NAPHTHALENE	0.0086	J	0.0099	LOD	0.099	LOQ	ug/L	J	RI, Surr

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW02-GW08	Collec	Collected: 12/5/2012 2:10:00 Analysis Type: Initial/TOT-									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZO(A)ANTHRACENE	0.0041	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb		
BENZO(B)FLUORANTHENE	0.0038	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb		
BENZO(G,H,I)PERYLENE	0.0046	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb		
NAPHTHALENE	0.0079	J	0.011	LOD	0.11	LOQ	ug/L	J	RI		

Sample ID: SWMU56-TMW09-GW07	Collec	ted: 12/5/2	012 9:50	00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	0.0064	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb	
BENZO(B)FLUORANTHENE	0.0065	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb	
BENZO(G,H,I)PERYLENE	0.0052	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb	
CHRYSENE	0.0045	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb	
NAPHTHALENE	0.0080	J	0.011	LOD	0.11	LOQ	ug/L	J	RI	

Method Category: VOA

Sample ID: SWMU56-TMW06-SO02	Collected: 12/5/2012 11:33:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	270	J	430	LOD	950	LOQ	ug/Kg	J	RI		

Method Category: VOA

Sample ID: SWMU56-TMW01-GW05	Collec	Collected: 12/5/2012 8:45:00 Analysis Type: Initial/TOT										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
GASOLINE RANGE ORGANICS	22	JQ	20	LOD	25	LOQ	ug/L	J	RI, Surr			
Sample ID: SWMU56-TMW01-GW06	Collec	ted: 12/5/2	012 8:50	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
					-	-	1					

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-TMW02-GW08	Collec	ted: 12/5/2	012 2:10	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
GASOLINE RANGE ORGANICS	12	J	20	LOD	25	LOQ	ug/L	J	RI
Sample ID: SWMU56-TMW09-GW07	Collec	ted: 12/5/2	012 9:50	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
GASOLINE RANGE ORGANICS	12	JQ	20	LOD	25	LOQ	ug/L	J	RI, Surr

Method Category: VOA

Sample ID: SWMU56-TMW06-SO02	Collec	ted: 12/5/2	al/TOT	Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	7.8	J	5.0	LOD	16	LOQ	ug/Kg	J	RI
BROMOFORM	0.49	J	0.62	LOD	3.9	LOQ	ug/Kg	U	Mb
P-ISOPROPYLTOLUENE	0.68	J	0.78	LOD	3.9	LOQ	ug/Kg	J	RI
TETRACHLOROETHENE	1.8	J	0.78	LOD	3.9	LOQ	ug/Kg	J	RI

Sample ID: SWMU56-TMW06-SO03	Collec	ted: 12/5/2	012 11:5	5:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOFORM	0.42	J	0.79	LOD	5.0	LOQ	ug/Kg	U	Mb	
TRICHLOROETHENE	0.49	J	0.79	LOD	5.0	LOQ	ug/Kg	J	RI	

Sample ID: SWMU56-TMW08-SO04	Collec	ted: 12/5/2	012 2:45:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOFORM	0.36	J	0.66	LOD	4.1	LOQ	ug/Kg	U	Mb	

#### Lab Reporting Batch ID: 280-36669-1

#### Laboratory: TAL DEN

EDD Filename: 280-36669-1_BayWest

eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-TMW02-GW08	Collected: 12/5/2012 2:10:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ACETONE	2.2	J	6.4	LOD	10	LOQ	ug/L	J	RI	
CIS-1,2-DICHLOROETHENE	0.16	J	0.20	LOD	1.0	LOQ	ug/L	J	RI	

# Lab Reporting Batch ID: 280-36669-1 EDD Filename: 280-36669-1_BayWest

Laboratory: TAL DEN

eQAPP Name: Bay West-Joint Base Andrews_20130129

# **Reason Code Legend**

Reason Code	Description
Fd	Field Duplicate Precision
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Upper Estimation
Mb	Method Blank Contamination
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Upper Estimation

# Laboratory Analytical Data Validation

Site:JBA SWMU 56Date Completed:01-14-2013Submitted by:Nancy McDonaldSample Collection Date(s):12-06-2012 and 12-07-2012TestAmerica Project Number(s) (LPN):280-36819-1Bay West DMS #:1605943

This data validation memo describes the validation of 2 aqueous samples, 11 soil samples, and 2 Trip Blanks collected on December 6 and 7, 2012 and analyzed for VOCs (8260B), SVOCs (SW-846 8270C), PAHs (8270-SIM), Organochlorine Pesticides (8081B), PCBs (8082A), Herbicides (8151A), GRO and DRO (8015C), and TAL Metals (6010B, 6020A, 7470A, and 7471B) at TestAmerica Laboratory in Denver, Colorado as sample delivery group (SDG) 280-36819-1. In addition, 6 soil samples were analyzed for pH (9045D). Samples included as part of this validation are listed below:

Sample ID	Date Sampled			TestA	merica, De	nver		
		Lab ID	VOC	SVOCs PAHs	Herbicides Pesticides PCBs	DRO / GRO	pН	TAL Metals
SWMU56-TMW04-GW10	12/06/2012	36819-1	Х	Х	Х	Х		X*
SWMU56-TMW03-GW09	12/06/2012	36819-2	Х	Х	Х	Х		Х
SWMU56-TMW01-SO05	12/06/2012	36819-3	Х	Х	Х	Х	Х	Х
SWMU56-TMW01-SO06	12/06/2012	36819-4	X‡	X‡	X [‡]	X‡		X [‡]
SWMU56-TMW01-SO07	12/06/2012	36819-5	Х	Х	Х	Х		Х
SWMU56-TMW02-SO08	12/06/2012	36819-6	Х	Х	Х	Х		Х
SWMU56-TMW02-SO09	12/06/2012	36819-7	Х	Х	Х	Х		Х
SWMU56-TMW09-SO10	12/06/2012	36819-8	Х	Х	Х	Х		Х
SWMU56-AQTB03	12/06/2012	36819-9TB	Х					
SWMU56-TMW03-SO11	12/07/2012	36819-10	Х	Х	Х	Х	Х	Х
SWMU56-TMW03-SO12	12/07/2012	36819-11	Х	Х	Х	Х	Х	Х
SWMU56-TMW04-SO13	12/07/2012	36819-12	Х	Х	Х	Х	Х	Х
SWMU56-TMW05-SO14	12/07/2012	36819-13	Х	Х	Х	Х	Х	Х
SWMU56-TMW05-SO15	12/07/2012	36819-14	Х*	Χ*	X*	Х*	Х	X*
SWMU56-AQTB04	12/07/2012	36819-15TB	Х					

[‡] - Duplicate sample of SWMU56-TMW01-SO05

* - Sample selected for MS/MSD analysis.

Sample ID	Date Sampled		TestAmerica, Denver									
		Lab ID	VOC	SVOCs	PAHs	Pesticides, PCBs	Herbicides	DR0/GR0	Hd	TAL Metals		
SWMU56-TMW04-GW10	12/06/2012	36819-1	U: cis-1,2- Dichloroethene U: Methylene chloride U: Naphthalene U: Trichloroethene	Ethylhexyl)phthalate	U: Fluoranthene	UJ: Toxaphene				U: Copper		
SWMU56-TMW03-GW09	12/06/2012	36819-2	U: Methylene chloride		UJ: Benzo(b)fluoranthene J: Fluoranthene J: Fluorene J: Naphthalene J: Phenanthrene	UJ: Toxaphene				U: Copper		
SWMU56-TMW01-SO05	12/06/2012	36819-3	UJ: Chloromethane							J: Chromium J: Cobalt J: Lead J: Manganese J: Nickel J: Vanadium		
SWMU56-TMW01-SO06	12/06/2012	36819-4	U: Acetone							J: Chromium J: Cobalt J: Lead J: Manganese J: Nickel J: Vanadium		
SWMU56-TMW01-SO07	12/06/2012	36819-5	J: 1,3,5- Trimethylbenzene J: 2-Butanone J: Acetone J: Carbon disulfide J: Naphthalene		J: Benzo(b)fluoranthene UJ: Benzo(k)fluoranthene							
SWMU56-TMW02-SO08	12/06/2012	36819-6	J: 2-Butanone J: Acetone J: Carbon disulfide J: cis-1,2-									

The Data Qualification Summary Table below summarizes the qualifications that were applied during validation:

# Joint Base Andrews SWMU 56 Data Validation January 2013

Sample ID	Date Sampled		TestAmerica, Denver							
			Dichloroethene J: Toluene J: trans-1,2- Dichloroethene							
SWMU56-TMW02-SO09	12/06/2012	36819-7	U: Acetone							
SWMU56-TMW09-SO10	12/06/2012	36819-8	U: Acetone	U: Benzyl alcohol						
SWMU56-AQTB03	12/06/2012	36819-9TB	U: Methylene chloride							
SWMU56-TMW03-SO11	12/07/2012	36819-10	U: Acetone	U: Benzyl alcohol						
SWMU56-TMW03-SO12	12/07/2012	36819-11	U: Acetone	U: Benzyl alcohol						
SWMU56-TMW04-SO13	12/07/2012	36819-12	U: Acetone	U: Benzyl alcohol						
SWMU56-TMW05-SO14	12/07/2012	36819-13	U: Acetone							
SWMU56-TMW05-SO15	12/07/2012	36819-14	U: Acetone	U: Benzyl alcohol				J: DRO J: GRO		J: Aluminum UJ: Antimony J: Molybdenum J: Vanadium
SWMU56-AQTB04	12/07/2012	36819-15TB	U: Methylene chloride							

Validation was conducted according to this hierarchy of validation guidance: USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data June 2005 (USACE, 2005), DoD Quality Systems Manual for Environmental Laboratories, v 4.2, October 2010 (DoD, 2010), USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010). The QAPP and analytical methods were consulted during the data validation.

A Level II ADR was also performed on this data and the qualifiers summary report is included in Attachment 1. Target analytes present between the LOQ and MDL were flagged "J" as estimated. Aluminum and Iron were qualified "J" as estimated in sample SWMU56-TMW06-SO15 due to high MS/MSD recoveries; however, the validator did not apply qualifiers, because the sample results were greater than four times the spike concentrations. GRO results in samples SWMU56-TMW03-GW09 and SWMU56-TMW04-GW10 were qualified "J" as estimated because of the LCS; however, the validator did not apply qualifiers, because the LCS met criteria. Field duplicate results for Arsenic, Benzyl alcohol, Beryllium, Cadmium, Molybdenum, Potassium, Selenium, Silver, Thallium, and Zinc were also qualified "J" as estimated by ADR; however, the validator only calculated RPDs when both the parent and field duplicates results were ≥ the LOQs.

## Data Validation Detail:

# • Data Package Completeness

The Level IV data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the method. The data package is complete.

# Laboratory Case Narrative/Cooler Receipt Form

No anomalies were noted on the chain of custody or cooler receipt forms that affected data quality. The laboratory case narrative was accurate and complete and documented that a revised chain-of-custody (CoC) was received from Bay West requesting SVOC analysis plus TICs for all samples except trip blanks. In addition, pH analysis was added for sample SWMU56-TMW01-SO05.

# • Holding Times, Storage, and Preservation

Review of the sample collection and analysis dates involved comparing the CoCs, the summary forms, and the data report for holding time compliance.

All samples were received correctly, intact and properly preserved. All samples were prepared and analyzed within the turnaround time required by the project.

## • Instrument Performance Check

The instruments met all applicable performance check requirements. The instrument performance check included verification of 4-Bromofluorobenzene (BFB) tunes for VOC and Decafluorotriphenylphosphine (DFTPP) for PAHs and SVOCs. All samples were analyzed within 12 hours of the BFB and DFTPP tunes.

## • Initial Calibration (ICAL) / Initial Calibration Verification (ICV)

ICAL and ICV acceptance criteria were met for all parameters except for the following.

**Pesticides**: In the ICV (11/14/2012 21:03), % differences for several peaks exceeded the criterion of 15% on both columns. Toxaphene results were qualified "UJ" as estimated in samples SWMU56-TMW04-GW10 and SWMU56-TMW03-GW09. In the ICV (11/15/2012 18:59), % differences for several peaks exceeded the criterion of 15% on column CLP1. No action was required, because all Toxaphene peaks met criteria on column CLP2.

**PCBs**: In the ICV (12/19/2012 02:40), the %D of 22.5% for a single Aroclor 1254 peak was biased high and exceeded criterion of 20%. No qualification was required, because Aroclor 1254 was non-detect in the associated samples.

## • Continuing Calibration Verification (CCV)

CCV acceptance criteria were met for all parameters with the following exception:

**VOCs:** In the CCV (12/12/2012 19:09), % Differences for Chloromethane (-21.2%), Carbon tetrachloride (27.5%), and 4-Methyl-2-pentanone (20.7%) were outside acceptance criteria of  $\leq$  20%. The Chloromethane result was qualified "UJ" as estimated in sample SWMU56-TMW01-SO05. No further qualification was required, because of potential high bias for Carbon tetrachloride and 4-Methyl-2-pentanone in this CCV and Carbon tetrachloride and 4-Methyl-2-pentanone were non-detect in sample SWMU56-TMW01-SO05.

**Pesticides**: In CCVs [12/17/2012 (14:58 and 21:41), 12/18/2012 (00:54), and 12/19/2012 (18:50)], % differences for several Toxaphene peaks were outside acceptance criteria of  $\leq$  15% on column CLP1. No action was required, because all Toxaphene peaks met criteria on column CLP2. In the CCVs (12/18/2012 16:14 and 19:17), the % differences for 4,4'-DDD (22.7% and 21.1%) were outside criteria on column CLP2. No action was required, because the % differences met criteria on column CLP1. In the CCV (12/19/2012 18:33), the % differences for 4,4'-DDT (-20.9%) and Methoxychlor (-21.8%) on column CLP1 and Endosulfan sulfate (24.8%) on column CLP2 were outside criteria. No action was required, because the % differences met criteria on column CLP2 were outside criteria. No action was required, because the % differences met criteria on column CLP2 were outside criteria. No action was required, because the % differences met criteria on the other column.

**PCBs**: In the CCVRT (12/21/2012 15:38), % Differences for a single Aroclor 1260 peak (-20.8%) and surrogate Decachlorobiphenyl (DCB) (-23.0%) were biased low and outside the criterion of 20%. No action was required, because only a method blank and LCS were associated with this standard.

In the CCV (12/12/2012 23:50), the % Difference for a single Aroclor 1260 peak (24.8%) was biased high and outside the criterion of 20%. No action was required, because Aroclor 1260 was non-detect in the associated samples.

In the CCV (12/13/2012 07:40), % Differences for a single Aroclor 1260 peak (22.5%) and surrogate Decachlorobiphenyl (DCB) (27.0%) were biased high and outside the criterion of 20%. No qualification was required, because Aroclor 1260 was non-detect and all surrogate recoveries met criteria in the associated samples.

**Herbicides**: In the CCVs (12/14/2012 23:57, 12/15/2012 04:25, 12/18/2012 19:54), % differences for several herbicides were outside criteria of  $\leq$  20% with high bias on one or both columns. No action was required, because these compounds were non-detect in the associated samples.

# • Pesticide Performance Evaluation Mixture (PEM)

In the Pesticide analysis, the % breakdown met the acceptance criterion of 15%.

## CRQL Check Standard

All acceptance criteria were met for the CRQL Check Standards.

## • Interference Check Standard

The Interference Check Standards met method and DoD QSM acceptance criteria except for the following. The Cadmium and/or Nickel results were greater than the LOD in analytical batches 280-152424 and 280-152050. The laboratory flagged the associated results "Q", as required by DoD QSM. The validator removed the "Q" flag, because the vendor confirmed that Cadmium and Nickel are trace impurities in the ICSA solution.

# • Method Blank and Trip Blank

Target analytes were not detected above ½ the Limit of Quantitation (LOQ) in the Method Blanks except for the following. In the VOC analysis, Chloroform (14 ug/L), cis-1,2-Dichloroethene (0.60 ug/L), Trichloroethene (4.7 ug/L), and Trichlorofluoromethane (1.3 ug/L) results were > ½ LOQs of 1.0 ug/L and 2.0 ug/L in trip blank SWMU56-AQTB03. cis-1,2-Dichloroethene and Trichloroethene results were qualified "U" and raised to the LOQ (as appropriate) in sample SWMU56-TMW04-GW10, because the results were < five times the trip blank concentrations. No further qualification was required, because Chloroform and Trichlorofluoromethane were non-detect in the associated samples. The following anomalies were also noted:

**VOCs**: A low-level concentration of Acetone (7.47 ug/kg), < ½ the LOQ of 20 ug/kg, was detected in the Method Blank151707/1-A. Acetone results in samples SWMU56-TMW01-SO06, SWMU56-TMW02-SO09, SWMU56-TMW09-SO10, SWMU56-TMW03-SO11, SWMU56-TMW03-SO12, SWMU56-TMW04-SO13, SWMU56-TMW05-SO14, and SWMU56-TMW05-SO15 were qualified "U" and raised to the LOQ, because the results were < five times the blank concentration.

Low-level concentrations of 1,2,3-Trichlorobenzene (0.29 ug/L), Methylene chloride (0.674 ug/L), and Naphthalene (0.326 ug/L), <  $\frac{1}{2}$  the LOQs of 1.0 ug/L and 5.0 ug/L, were detected in Method Blank 152167/5. Results for Methylene chloride in samples SWMU56-TMW04-GW10, SWMU56-TMW03-GW09, SWMU56-AQTB03, and SWMU56-AQTB04 and Naphthalene in sample SWMU56-TMW04-GW10 were flagged "U" and raised to the LOQ, because the results were < five times the Method Blank concentrations. No further qualification was required, because 1,2,3-Trichlorobenzene was non-detect in the associated samples.

Low-level concentrations of 1,2,3-Trichlorobenzene (0.271 ug/L), Methylene chloride (0.683 ug/L), and Naphthalene (0.292 ug/L), <  $\frac{1}{2}$  the LOQs of 1.0 ug/L and 5.0 ug/L, were detected in Method Blank 152684/5. No qualification was required, because only Chloroform was reported from the sample associated with this Method Blank.

**SVOC**: A low-level concentration of Benzyl alcohol (9.13 ug/kg), < ½ the LOQ of 300 ug/kg, was detected in Method Blank 151705/1-A. Benzyl alcohol results in samples SWMU56-TMW09-SO010, SWMU56-TMW03-SO011, SWMU56-TMW03-SO012, SWMU56-TMW04-SO013, and SWMU56-TMW05-SO015, were qualified "U" and raised to the LOQ, because the results were < five times the blank concentration.

**PAHs**: Low-level concentrations of the following analytes were detected at concentrations  $< \frac{1}{2}$  the LOQs in the aqueous Method Blank:

Blank ID	Analyte	Result (ug/L)	LOQ (ug/L)
MB 151404/1-A	Benzo(a)anthracene	0.00559	0.10
	Benzo(b)fluoranthene	0.00348	0.10
	Benzo(k)fluoranthene	0.0153	0.10
	Chrysene	0.00437	0.10
	Fluoranthene	0.00808	0.10

The result for Fluoranthene in sample SWMU56-TMW04-GW10 was qualified "U" and raised to the LOQ, because the result were < five times the blank concentration. No further action was required, because the remaining PAHs were non-detect or > five times the blank concentrations.

## Equipment Blank:

**VOCs**: A low-level concentration of Acetone (2.9 ug/L) was detected in the equipment blank sample (from SDG 36632). No action was warranted, because sample results were either non-detect, previously qualified because of method blank contamination, or greater than five times the blank concentration.

**SVOCs**: Low-level concentrations of bis(2-Ethylhexyl)phthalate (2.1 ug/L) and Phenol (2.9 ug/L) were detected in the equipment blank sample SWMU56-AQEB01. The result for bis(2-Ethylhexyl)phthalate in sample SWMU56-TMW04-GW10 was qualified "U" and raised to the LOQ, because the result was < five times the equipment blank concentration. No further action was required, because Phenol was non-detect in the associated samples.

**GRO**: A low-level concentration of GRO,  $< \frac{1}{2}$  the LOQ, was detected in equipment blank sample SWMU56-AQEB01 (0.017 mg/L). No qualification was required, because GRO results were either non-detect or greater than five times the blank concentration.

*Metals*: The following metals were detected in the Equipment Blank Sample:

Blank ID	Analyte	Result (ug/L)
SWMU56-AQEB01	Calcium	47
	Copper	0.89 J
	Manganese	0.42 J

Results for Copper were qualified "U" in samples SWMU56-TMW04-GW10 and SWMU56-TMW03-GW09, because the results were < five times the equipment blank concentration. No further qualification was required, because Calcium and Manganese results were > five times the equipment blank concentrations.

**Field Blank**: Acetone, Chlorodibromomethane, Chloroform, Dibromomethane, Benzyl Alcohol, Naphthalene, Phenanthrene, GRO, DRO, Aluminum, Barium, Calcium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Sodium, and Zinc were detected in Field Blank sample SWMU56-AQFB01 (from SDG 36632). No qualification was applied based on the field blank contamination.

### • Surrogate Spikes

Surrogates were added to all samples and QC samples as required by the analytical method. All surrogate recoveries met the required QC criteria except for the following.

**VOCs**: Recoveries for surrogate 4-Bromofluorobenzene (both 126%) in samples SWMU56-TMW01-SO07 and SWMU56-TMW02-SO08 were biased high and outside criteria of 85-120%. Detected VOC results associated with this surrogate were qualified "J" as estimated and may be biased high in these samples.

**PAHs**: The recovery for surrogate Terphenyl-d14 of 293% was biased high and outside acceptance criteria of 47-120% in sample SWMU56-TMW03-GW09. The detected result for Phenanthrene was qualified "J" as estimated and may be biased high in this sample.

**GRO**: The recovery for surrogate a,a,a-Trifluorotoluene of 120% in sample SWMU56-TMW03-GW09 was biased high and outside criteria of 82-110%. No action was required, because GRO was non-detect in sample SWMU56-TMW03-GW09.

**Herbicides**: Recoveries for surrogate 2,4-Dichlorophenyl acetic acid (DCPA) in the following samples exceed acceptance criteria:

Sample	DCPA1 (%R)*	DCPA2 (%R)*	QC Limits
SWMU56-TMW01-SO06	111	100	31-105
SWMU56-TMW03-SO12	97	110	31-105
SWMU56-TMW03-SO12	94	109	31-105

* Bolded values are outside QC limits.

The laboratory applied a "Q" flag to associated sample results. The validator removed the "Q" flags, because the surrogate recoveries were biased high and all herbicides in the above samples were non-detect, so no qualification was warranted.

## • Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS/MSD analyses were performed on sample SWMU56-TMW05-SO15 for all methods and sample SWMU56-TMW04-GW10 for metals. All recoveries and RPDs were within acceptance criteria except for the following. In the GRO analysis, the MS recovery of 82% for GRO was biased low and outside acceptance criteria of 85-153% in sample SWMU56-TMW05-SO15. The GRO result was qualified "J" as estimated and may be biased low in the parent sample. **DRO**: The RPD for DRO of 26% exceeded acceptance criteria in sample SWMU56-TMW05-SO15. The DRO result was qualified "J" as estimated in the parent sample.

**Herbicides**: MS/MSD recoveries for 2,4-Dicamba (101% and 95%) and the MS recovery for 2,4-D (102%) were biased high and outside QC limits of 11-87% and 32-97%, respectively, in sample SWMU56-TMW05-SO15. No action was required, because these herbicides were non-detect in the parent sample.

**Metals**: MS/MSD recoveries for Aluminum (7149% and 7914%), Antimony (4% and 14%), Iron (2350% and 1666%), and Molybdenum (58% and 64%) and the MSD recovery for Vanadium (64%) were outside acceptance criteria in sample SWMU56-TMW05-SO15. Antimony and Molybdenum results were qualified "J" or "UJ", as appropriate, and may be biased low and the Vanadium result was qualified "J" and may be biased high in the parent sample. No qualification was required for Aluminum and Iron, because the sample results were greater than four times the spike concentrations.

# • Laboratory Control Sample (LCS)

All LCS recoveries were within the QAPP and the DoD QSM 4.2 acceptance criteria except for the following.

LCS ID	Analyte	LCS (%R)	QC Limits
151410/2-A	2,4,5-T	119	35-110&
	2,4-D	120	35-115%
	Dinoseb	99	20-95%
	2,4,5-TP (Silvex)	124	50-115%
151465/2-A	2,4-D	101	32-97%
	Dicamba	94	11-87%

No qualification was required, because these compounds were non-detect in the associated samples.

### Inductively Coupled Plasma (ICP) Serial Dilution (Dilution Test) and Post-Digestion Spikes

All ICP Serial Dilution % differences and Post Digestion Spike (PDS) recoveries were with acceptance criteria except for the following. In the ICP Serial Dilution, the % Difference for Iron (42%) was high and exceeded 10% in sample SWMU56-TMW05-SO15. PDS recoveries for Aluminum (33%) and Iron (56%) were biased low and outside QC limits of 75-125%. The Aluminum result was qualified "J" as estimated in sample SWMU56-TMW05-SO15. No further action was required for Iron, because the % Difference for Iron in the Serial Dilution met criteria.

## • Blind Field Duplicates

Blind field duplicates, SWMU56-TMW01-SO05 and SWMU56-TMW01-SO06, were analyzed for VOCs, SVOCs, PAHs, GRO, DRO, pesticides, PCBs, herbicides, and metals. All RPDs were within the field criteria of  $\leq$  20% for metals and  $\leq$  30% for all other parameters except for the following. RPDs for Chromium (50.5%), Cobalt (40.0%), Lead (56.0%), Manganese (46.8%), Nickel (52.1%), and Vanadium (57.1%) exceeded

the criteria of  $\leq 20\%$  for metals. Chromium, Cobalt, Lead, Manganese, Nickel, and Vanadium results were qualified "J" as estimated in samples SWMU56-TMW01-SO05 and SWMU56-TMW01-SO06. RPDs are not calculated unless both the parent and duplicate results are  $\geq$  the LOQ.

# • Internal Standards

All QC criteria were met for Internal Standards (IS) in all calibrations and all field samples.

# • Target Analyte Identification and Quantitation

Target compound identification followed the specific analytical Method. Retention times and Mass Spectra were consistent with the analytical standards. In the SVOC analysis, Benzo(b)fluoranthene and Benzo(k)fluoranthene could not be resolved in sample SWMU56-TMW01-SO07; therefore, the detected result was reported as Benzo(b)fluoranthene. The peak may be a combination of the two compounds, so both results were qualified "J" or "UJ" as estimated in this sample. Appropriate wavelengths were chosen for the metals analysis in addition to appropriate interelement correction factors.

Non-detected results were reported to the Limit of Detection (LOD) in accordance with DoD QSM 4.2. The laboratory also reported the LOQ for each analyte on the sample result sheet (Form 1). The laboratory reported target analytes, which were qualitatively identified at concentrations below the LOQs, with a "J" qualifier to indicate that the result is estimated as required by DoD QSM 4.2. The "J" qualifier was retained by the validator. In general, the LOQs reported are consistent with the LOQs listed in the QAPP.

Sample dilutions were not required except for the following. VOC sample SWMU56-TMW04-GW10 was initially analyzed undiluted; however a 10-fold dilution was required due to a high concentration of Chloroform. Chloroform was reported from the dilution and all other VOC compounds were reported from the undiluted analysis.

In the SVOC analysis, sample SWMU56-TMW03-SO11 was concentrated to 2 mL instead of the final method required volume of 1 mL, because of matrix interference. The LOQs were adjusted accordingly.

# • Tentatively Identified Compounds (TICs)

In the VOC and SVOC analyses, TICs were reported for all field samples.

**VOCs**: Siloxanes, cyclohexanones, and cyclohexanes were detected in some VOC samples. All siloxane, cyclohexanones, and cyclohexanes results were qualified "R" as rejected, because siloxanes are considered common laboratory contaminants (probable column bleed) and cyclohexanones and cyclohexanes are solvent preservatives associated with methylene chloride.

**SVOCs**: An unknown peak at RT 2.91 minutes and 4-methoxy-4-methyl-2-pentanone, were detected in some samples. The unknown peak and 4-methoxy-4-methyl-2-pentanone were detected in the method blank, so the results were qualified "R" as rejected. In addition, 4-methyl-3-penten-2-one was detected in several samples. These results were qualified "R" as rejected, because this compound is considered an aldol condensation reaction product.

## **Overall Evaluation**

A number of results were qualified as estimated as a result of MS/MSD, surrogate, and ICP serial dilution performance, blank contamination, and high RPDs in the field duplicate pair. Two SVOC results were also qualified as estimated, because of a coelution on the GC column. In addition, a number of TICs were rejected, because of method blank contamination, common laboratory contaminants, or solvent preservatives, and aldol condensation reaction products. All other validation elements were acceptable and the data, as qualified, is acceptable for its intended use.

Based on the criteria presented above, it is recommended that the results reported for these analyses be accepted a qualified. MS/MSD and LCS/LCSD and surrogate recoveries demonstrated that acceptable levels of accuracy and precision were achieved. In addition, completeness, defined to be the percentage of analytical results to be valid, including estimated values was 99% (excluding TIC values rejected) for this Sample Delivery Group.

## **Data Validation Qualifiers**

Validation Qualifier	Definition
J	The reported positive result is considered estimated, because the result is less than the LOQ or because certain quality control criteria were not met.
U	The analyte was not detected and is reported as less than the LOD or as defined by the client.
UJ	The analyte was not detected in the sample. The LOD (or LOQ) should be considered estimated and may be inaccurate or imprecise.
R	The result for this analyte is unusable. The analyte may or may not be present.

## References

USACE EM200-1-10 Guidance for Evaluating Performance-Based Chemical Data, June 2005. (USACE, 2005).

U.S. Department of Defense (DoD). DoD Quality Systems Manual for Environmental Laboratories, Version 4.2, October, 2010. (DoD, 2010).

U.S. Environmental Protection Agency (USEPA). USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June, 2008. (USEPA, 2008).

USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2010).

#### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SMW56-TMW03-SO11	Collec	ted: 12/7/2	012 8:50:	00 <mark>A</mark>	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	46000	J	21000	LOD	100000	LOQ	ug/Kg	J	RI
Sample ID: SMW56-TMW03-SO12	Collec	ted: 12/7/2	012 8:05:	00 A	nalysis T	ype: Initia	al/TOT	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Dat Revie Units Qua		Reason Code
CALCIUM	38000	J	22000	LOD	110000	LOQ	ug/Kg	J	RI
POTASSIUM	110000	J	54000	LOD	320000	LOQ	ug/Kg	J	RI
Sample ID: SMW56-TMW04-SO13	Collec	ted: 12/7/2	012 11:0	5:00 A	nalysis T	ype: Initia	al/TOT	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	67000	J	19000	LOD	97000	LOQ	ug/Kg	J	RI
POTASSIUM	92000	J	49000	LOD	290000	LOQ	ug/Kg	J	RI
Sample ID: SMW56-TMW05-SO14	Collected: 12/7/2012 12:10:00 Analysis Type: Initial/TOT Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	120000	J	110000	LOD	550000	LOQ	ug/Kg	J	RI
Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:30	):00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	4100000	J	3100	LOD	52000	LOQ	ug/Kg	J	Ms
CALCIUM	30000	J	21000	LOD	100000	LOQ	ug/Kg	J	RI
IRON	2300000	J	5200	LOD	83000	LOQ	ug/Kg	J	Ms
POTASSIUM	210000	J	52000	LOD	310000	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW01-SO05	Collec	ted: 12/6/2	012 9:00:	00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	240000	J	58000	LOD	350000	LOQ	ug/Kg	J	RI, Fd
Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10:	00 A	nalysis T	ype: Initia	al/TOT	ا ــــــــــــــــــــــــــــــــــــ	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	330000		48000	LOD	290000	LOQ	ug/Kg	J	Fd

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

#### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43:	00 A	nalysis T	ype: Initia	al/TOT	/	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	75000	J	110000	LOD	540000	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:32	2:00 A	nalysis T	ype: Initia	al/TOT	I	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	82000	J	110000	LOD	550000	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-TMW02-SO09	Collec	Collected: 12/6/2012 11:47:00 Analysis Type: Initial/TOT							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
POTASSIUM	160000	J	47000	LOD	280000	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-TMW09-SO10	Collec	ted: 12/6/2	012 2:30:	00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Analyte	Nesun										
Analyte CALCIUM	20000	J	20000	LOD	100000	LOQ	ug/Kg	J	RI		

Method Category: METALS

Sample ID: SWMU56-TMW03-GW09	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	220	J	30	LOD	300	LOQ	ug/L	J	RI
POTASSIUM	1500	J	250	LOD	3000	LOQ	ug/L	J	RI

Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	ype: Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	57	J	30	LOD	300	LOQ	ug/L	J	RI
POTASSIUM	1200	J	250	LOD	3000	LOQ	ug/L	J	RI

#### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SMW56-TMW03-SO11 Analyte	Collec	Collected: 12/7/2012 8:50:00 Analysis Type: Initial/TOT							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SILVER	26	J	54	LOD	90	LOQ	ug/Kg	J	RI
Sample ID: SMW56-TMW03-SO12	Collec	ted: 12/7/2	012 8.05	·00 A	nalvsis 1	vpe: Initia	al/TOT		Dilution: 1

Analyte	Collec	ted: 12/7/2	012 8:05	ype: Initia	ai/TOT	Dilution: 1			
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BERYLLIUM	33	J	64	LOD	98	LOQ	ug/Kg	J	RI
CADMIUM	69	JQ	25	LOD	98	LOQ	ug/Kg	J	RI
COPPER	1500	J	200	LOD	2500	LOQ	ug/Kg	J	RI
MOLYBDENUM	84	J	49	LOD	200	LOQ	ug/Kg	J	RI
SELENIUM	400	J	250	LOD	490	LOQ	ug/Kg	J	RI
THALLIUM	26	J	9.8	LOD	98	LOQ	ug/Kg	J	RI
ZINC	1000	J	880	LOD	2500	LOQ	ug/Kg	J	RI

Sample ID: SMW56-TMW04-SO13	Collec	Collected: 12/7/2012 11:05:00 Analysis Type: Initial/TOT									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BERYLLIUM	50	J	63	LOD	96	LOQ	ug/Kg	J	RI		
CADMIUM	53	JQ	24	LOD	96	LOQ	ug/Kg	J	RI		
COPPER	2300	J	190	LOD	2400	LOQ	ug/Kg	J	RI		
MOLYBDENUM	160	J	48	LOD	190	LOQ	ug/Kg	J	RI		
SELENIUM	420	J	240	LOD	480	LOQ	ug/Kg	J	RI		
SILVER	26	J	58	LOD	96	LOQ	ug/Kg	J	RI		
THALLIUM	27	J	9.6	LOD	96	LOQ	ug/Kg	J	RI		
ZINC	1300	J	870	LOD	2400	LOQ	ug/Kg	J	RI		

Sample ID: SMW56-TMW05-SO14	Collected: 12/7/2012 12:10:00 Analysis Type: Initial/TOT								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MOLYBDENUM	220	J	57	LOD	230	LOQ	ug/Kg	J	RI		
SILVER	34	J	69	LOD	110	LOQ	ug/Kg	J	RI		

Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	38	ΟJ	38	LOD	190	LOQ	ug/Kg	UJ	Ms

* denotes a non-reportable result

Project Name and Number: Joint Andrews AFB - Joint Andrews AFB

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

## EDD Filename: 280-36819-1_BayWest

## eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:3	0:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	43	J	62	LOD	96	LOQ	ug/Kg	J	RI	
CADMIUM	58	JQ	24	LOD	96	LOQ	ug/Kg	J	RI	
MOLYBDENUM	310	J	48	LOD	190	LOQ	ug/Kg	J	Ms	
SELENIUM	470	J	240	LOD	480	LOQ	ug/Kg	J	RI	
THALLIUM	30	J	9.6	LOD	96	LOQ	ug/Kg	J	RI	
VANADIUM	4900	J	96	LOD	480	LOQ	ug/Kg	J	Ms, Ms	
ZINC	750	J	860	LOD	2400	LOQ	ug/Kg	J	RI	

mple ID: SWMU56-TMW01-SO05	Collec	ted: 12/6/2	012 9:00:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	370	J	180	LOD	600	LOQ	ug/Kg	J	RI, Fd	
BERYLLIUM	42	J	77	LOD	120	LOQ	ug/Kg	J	RI, Fd	
CADMIUM	55	JQ	30	LOD	120	LOQ	ug/Kg	J	RI, Fd	
CHROMIUM	3700		210	LOD	240	LOQ	ug/Kg	J	Fd	
COBALT	200		21	LOD	120	LOQ	ug/Kg	J	Fd	
COPPER	1100	J	240	LOD	3000	LOQ	ug/Kg	J	RI, Fd	
LEAD	1800		60	LOD	120	LOQ	ug/Kg	J	Fd	
MANGANESE	3600		110	LOD	120	LOQ	ug/Kg	J	Fd	
MOLYBDENUM	81	J	60	LOD	240	LOQ	ug/Kg	J	RI, Fd	
NICKEL	540	Q	89	LOD	420	LOQ	ug/Kg	J	Fd	
SELENIUM	310	J	300	LOD	600	LOQ	ug/Kg	J	RI, Fd	
SILVER	71	U	71	LOD	120	LOQ	ug/Kg	UJ	Fd	
THALLIUM	37	J	12	LOD	120	LOQ	ug/Kg	J	RI, Fd	
VANADIUM	5500		120	LOD	600	LOQ	ug/Kg	J	Fd	
ZINC	1500	J	1100	LOD	3000	LOQ	ug/Kg	J	RI, Fd	

Sample ID: SWMU56-TMW01-SO06 Analyte	Collec	ted: 12/6/2	012 9:10	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	530		150	LOD	500	LOQ	ug/Kg	J	Fd	
BERYLLIUM	94	J	65	LOD	100	LOQ	ug/Kg	J	RI, Fd	
CADMIUM	97	JQ	25	LOD	100	LOQ	ug/Kg	J	RI, Fd	
CHROMIUM	6200		180	LOD	200	LOQ	ug/Kg	J	Fd	
COBALT	330		18	LOD	100	LOQ	ug/Kg	J	Fd	

* denotes a non-reportable result

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10	:00 A	nalysis T	ype: Initia	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
COPPER	1700	J	200	LOD	2500	LOQ	ug/Kg	J	RI, Fd	
LEAD	3200		50	LOD	100	LOQ	ug/Kg	J	Fd	
MANGANESE	5800		91	LOD	100	LOQ	ug/Kg	J	Fd	
MOLYBDENUM	100	J	50	LOD	200	LOQ	ug/Kg	J	RI, Fd	
NICKEL	920	Q	76	LOD	350	LOQ	ug/Kg	J	Fd	
SELENIUM	480	J	250	LOD	500	LOQ	ug/Kg	J	RI, Fd	
SILVER	21	J	60	LOD	100	LOQ	ug/Kg	J	RI, Fd	
THALLIUM	65	J	10	LOD	100	LOQ	ug/Kg	J	RI, Fd	
VANADIUM	9900		100	LOD	500	LOQ	ug/Kg	J	Fd	
ZINC	2400	J	910	LOD	2500	LOQ	ug/Kg	J	RI, Fd	
Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	ype: Initia	al/TOT	Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SILVER	45	J	60	LOD	100	LOQ	ug/Kg	J	RI	
Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:3	2:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SILVER	31	J	75	LOD	120	LOQ	ug/Kg	J	RI	
Sample ID: SWMU56-TMW02-SO09	Collec	ted: 12/6/2	012 11:4	7:00 A	nalysis T	ype: Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	68	J	70	LOD	110	LOQ	ug/Kg	J	RI	
CADMIUM	54	JQ	27	LOD	110	LOQ	ug/Kg	J	RI	
COPPER	1400	J	220	LOD	2700	LOQ	ug/Kg	J	RI	
MOLYBDENUM	85	J	54	LOD	220	LOQ	ug/Kg	J	RI	
SELENIUM	320	J	270	LOD	540	LOQ	ug/Kg	J	RI	
THALLIUM	35	J	11	LOD	110	LOQ	ug/Kg	J	RI	
ZINC	1000	J	970	LOD	2700	LOQ	ug/Kg	J	RI	

## Lab Reporting Batch ID: 280-36819-1

## Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

## eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW09-SO10	Collec	ted: 12/6/2	012 2:30:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	83	J	74	LOD	110	LOQ	ug/Kg	J	RI	
CADMIUM	81	JQ	29	LOD	110	LOQ	ug/Kg	J	RI	
COPPER	1400	J	230	LOD	2900	LOQ	ug/Kg	J	RI	
MOLYBDENUM	170	J	57	LOD	230	LOQ	ug/Kg	J	RI	
SELENIUM	420	J	290	LOD	570	LOQ	ug/Kg	J	RI	
THALLIUM	41	J	11	LOD	110	LOQ	ug/Kg	J	RI	
ZINC	1500	J	1000	LOD	2900	LOQ	ug/Kg	J	RI	

## Method Category: METALS

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50:	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	0.46	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	3.4	J	1.5	LOD	10	LOQ	ug/L	J	RI	
COPPER	1.5	J	1.5	LOD	2.0	LOQ	ug/L	J	RI	
LEAD	0.29	J	0.50	LOD	3.0	LOQ	ug/L	J	RI	
MOLYBDENUM	0.41	J	0.40	LOD	2.0	LOQ	ug/L	J	RI	
THALLIUM	0.063	J	0.10	LOD	1.0	LOQ	ug/L	J	RI	
ZINC	19	J	6.0	LOD	20	LOQ	ug/L	J	RI	

Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	<del>ype:</del> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BERYLLIUM	0.17	J	0.24	LOD	1.0	LOQ	ug/L	J	RI	
CADMIUM	0.47	JQ	0.12	LOD	1.0	LOQ	ug/L	J	RI	
CHROMIUM	1.0	J	1.5	LOD	10	LOQ	ug/L	J	RI	
COPPER	0.84	J	1.5	LOD	2.0	LOQ	ug/L	J	RI	
LEAD	0.69	J	0.50	LOD	3.0	LOQ	ug/L	J	RI	
THALLIUM	0.081	J	0.10	LOD	1.0	LOQ	ug/L	J	RI	
ZINC	9.0	J	6.0	LOD	20	LOQ	ug/L	J	RI	

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: METALS

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.15	J	0.080	LOD	0.20	LOQ	ug/L	J	RI	

## Method Category: SVOA

Sample ID: SMW56-TMW03-SO11	Collec	ted: 12/7/2	012 8:50	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	4400	М	2100	LOD	4100	LOQ	ug/Kg	J	Ms	
Sample ID: SMW56-TMW03-SO12	Collec	ted: 12/7/2	012 8:05	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	880	J	2000	LOD	4100	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SMW56-TMW04-SO13	Collec	1	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	1800	J	2100	LOD	4100	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SMW56-TMW05-SO14	Collec	ted: 12/7/2	012 12:10	0:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	1900	J	2200	LOD	4500	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:3	0:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	830	J	2100	LOD	4200	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SWMU56-TMW01-SO05	Collected: 12/6/2012 9:00:00 Analysis Type: Initial/TOT Dilu									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	960	J	-	-	1	-	1	I I		

### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10:	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	810	J	2200	LOD	4400	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	9500	М	2400	LOD	4700	LOQ	ug/Kg	J	Ms	
Sample ID: SWMU56-TMW02-SO08	Collec	Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	4000	JM	2500	LOD	5000	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SWMU56-TMW02-SO09	Collec	ted: 12/6/2	012 11:4	7:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	1700	J	2200	LOD	4300	LOQ	ug/Kg	J	RI, Ms	
Sample ID: SWMU56-TMW09-SO10	Collec	ted: 12/6/2	012 2:30	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIESEL RANGE ORGANICS	2900	J	2300	LOD	4600	LOQ	ug/Kg	J	RI, Ms	

### Method Category: SVOA

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50:	00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIESEL RANGE ORGANICS	76	JM	110	LOD	280	LOQ	ug/L	J	RI

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43	:00 A	nalysis 1	<b>Type:</b> Initia	al/TOT-	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	1.2	J	0.53	LOD	2.0	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43	:00 A	nalysis 1	<i>ype:</i> Rea	nalysis-0	1/ТОТ-	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	1.8	J	0.79	LOD	2.0	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW02-SO08	Collec		012 11:3	2:00 A	nalysis 1	' <i>ype:</i> Rea	nalysis-0	1/TOT-	Dilution: 1
								Data	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	1.7	J	0.83	LOD	2.0	LOQ	ug/Kg	J	RI

## Method Category: SVOA

Sample ID: SMW56-TMW03-SO11	Collec	ted: 12/7/2	012 8:50	:00 A	nalysis 1	<i>ype:</i> Initia	al/TOT-	l	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZYL ALCOHOL	28	J	68	LOD	680	LOQ	ug/Kg	U	Mb		
Sample ID: SMW56-TMW03-SO12	Collec	ted: 12/7/2	012 8:05	:00 A	nalysis 1	<i>ype:</i> Initia	al/TOT-	1	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZYL ALCOHOL	28	J	34	LOD	340	LOQ	ug/Kg	U	Mb		
Sample ID: SMW56-TMW04-SO13	Collected: 12/7/2012 11:05:00 Analysis Type: Initial/TOT- Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZYL ALCOHOL	36	J	34	LOD	340	LOQ	ug/Kg	U	Mb		
Sample ID: SMW56-TMW05-SO14	Collec	ted: 12/7/2	012 12:1	0:00 A	nalysis 1	<i>ype:</i> Initia	al/TOT-	1	Dilution: 1		
				D		RL		Data Review	Deserve		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	Type	Units	Qual	Reason Code		

* denotes a non-reportable result **Project Name and Number: Joint Andrews AFB - Joint Andrews AFB** 2/15/2013 8:36:43 AM ADR version 1.7.0.207

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:3	0:00 A	nalysis T	<i>ype:</i> Initia	al/TOT-	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	16	J	36	LOD	360	LOQ	ug/Kg	U	Mb
Sample ID: SWMU56-TMW01-SO05	Collec	ted: 12/6/2	012 9:00	:00 A	nalysis T	<i>ype:</i> Initi	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	41	U	41	LOD	410	LOQ	ug/Kg	UJ	Fd
Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10	:00 A	nalysis T	<i>ype:</i> Initia	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	26	J	36	LOD	360	LOQ	ug/Kg	J	RI, Fd
Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43	:00 A	nalysis T	<i>ype:</i> Initi	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	44	JK	38	LOD	380	LOQ	ug/Kg	J	RI
CHRYSENE	38	J	38	LOD	380	LOQ	ug/Kg	J	RI
PYRENE	47	J	38	LOD	460	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:3	2:00 A	nalysis T	<i>ype:</i> Initi	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	42	J	38	LOD	380	LOQ	ug/Kg	J	RI
PYRENE	20	J	38	LOD	460	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW02-SO09	Collec	ted: 12/6/2	012 11:4	7:00 A	nalysis T	<i>ype:</i> Initi	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	39	J	35	LOD	350	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW09-SO10	Collec	<i>ted:</i> 12/6/2	012 2:30	:00 A	nalysis T	<i>ype:</i> Initi	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	39	J	39	LOD	390	LOQ	ug/Kg	U	Mb

* denotes a non-reportable result **Project Name and Number: Joint Andrews AFB - Joint Andrews AFB** 2/15/2013 8:36:43 AM ADR version 1.7.0.207

### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BIS(2-ETHYLHEXYL)PHTHALATE	0.93	J	1.1	LOD	11	LOQ	ug/L	J	RI	

## Method Category: SVOA

Sample ID: SMW56-TMW05-SO14	Collec	ted: 12/7/2	012 12:10	D:00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NAPHTHALENE	0.66	J	0.77	LOD	5.8	LOQ	ug/Kg	J	RI

Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43	:00 🖌	Analysis T	<i>ype:</i> Initia	al/TOT-	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ACENAPHTHENE	2.2	J	0.30	LOD	5.5	LOQ	ug/Kg	J	RI	
DIBENZO(A,H)ANTHRACENE	3.9	J	2.8	LOD	5.5	LOQ	ug/Kg	J	RI	
FLUORENE	5.4	J	0.74	LOD	5.5	LOQ	ug/Kg	J	RI	

Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:3	2:00 A	nalysis T	ype: Initia	al/TOT-	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ACENAPHTHYLENE	4.0	J	0.76	LOD	5.7	LOQ	ug/Kg	J	RI	
ANTHRACENE	3.7	J	2.9	LOD	5.7	LOQ	ug/Kg	J	RI	
DIBENZO(A,H)ANTHRACENE	3.4	J	2.9	LOD	5.7	LOQ	ug/Kg	J	RI	
FLUORENE	4.0	J	0.76	LOD	5.7	LOQ	ug/Kg	J	RI	

## Method Category: SVOA

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50:	:00 A	nalysis T	ype: Initia	al/TOT-	TOT- Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(B)FLUORANTHENE	0.0050	JQ	0.011	LOD	0.11	LOQ	ug/L	UJ	Mb, Surr	
FLUORANTHENE	0.092	J	0.011	LOD	0.11	LOQ	ug/L	J	RI, Surr	
FLUORENE	0.14		0.022	LOD	0.11	LOQ	ug/L	J	Surr	
NAPHTHALENE	0.039	J	0.011	LOD	0.11	LOQ	ug/L	J	RI, Surr	

* denotes a non-reportable result

### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: SVOA

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50	00 A	nalysis T	ype: Initia	al/TOT-	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHENANTHRENE	0.23		0.013	LOD	0.11	LOQ	ug/L	J	Surr
Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	ype: Initia	al/TOT-		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORANTHENE	0.0059	J	0.011	LOD	0.11	LOQ	ug/L	U	Mb

0.021

J

0.067

LOD

0.11

LOQ

ug/L

J

RI

Method Category: VOA

FLUORENE

Sample ID: SMW56-TMW05-SO14	Collec	Collected: 12/7/2012 12:10:00 Analysis Type: Initial/TOT									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	340	J	570	LOD	1300	LOQ	ug/Kg	J	RI		
Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:30	):00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	270	J	420	LOD	940	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-TMW01-SO05	Collec	al/TOT	Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS	290	J	460	LOD	1000	LOQ	ug/Kg	J	RI		
Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10:	00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1		
Sample ID: SWMU56-TMW01-SO06 Analyte	Collec Lab Result	ted: 12/6/2 Lab Qual	012 9:10: DL	00 A DL Type	nalysis T RL	ype: Initia RL Type	al/TOT Units	Data Review Qual	Dilution: 1 Reason Code		
· ·	Lab	Lab		DL		RL		Data Review	Reason		
Analyte	Lab Result 260	Lab Qual	<b>DL</b> 410	DL Type LOD	<b>RL</b> 920	RL Type	Units ug/Kg	Data Review Qual	Reason Code		
Analyte GASOLINE RANGE ORGANICS	Lab Result 260	Lab Qual	<b>DL</b> 410	DL Type LOD	<b>RL</b> 920	RL Type	Units ug/Kg	Data Review Qual	Reason Code RI		

* denotes a non-reportable result

### Lab Reporting Batch ID: 280-36819-1

#### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-TMW09-SO10	Collec	ted: 12/6/2	012 2:30:	00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
GASOLINE RANGE ORGANICS	330	J	500	LOD	1100	LOQ	ug/Kg	J	RI	

## Method Category: VOA

Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50	:00 A	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
GASOLINE RANGE ORGANICS	20	UQ	20	LOD	25	LOQ	ug/L	UJ	Lcs	
Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	<i>ype:</i> Initia	al/TOT	TOT Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
GASOLINE RANGE ORGANICS	83	Q	20	LOD	25	LOQ	ug/L	J	Lcs	

## Method Category: VOA

Sample ID: SMW56-TMW03-SO11	Collec	ted: 12/7/2	012 8:50:	00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	4.4	J	7.5	LOD	15	LOQ	ug/Kg	U	Mb
Sample ID: SMW56-TMW03-SO12	Collec	ted: 12/7/2	012 8:05:	00 A	nalysis T	ype: Initia	al/TOT	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	6.1	J	7.8	LOD	16	LOQ	ug/Kg	U	Mb
Sample ID: SMW56-TMW04-SO13	Collec	ted: 12/7/2	012 11:0	5:00 A	nalysis T	<i>ype:</i> Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	6.1	J	6.9	LOD	14	LOQ	ug/Kg	U	Mb

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SMW56-TMW05-SO14	Collec	ted: 12/7/2	012 12:10	0:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	21		10	LOD	20	LOQ	ug/Kg	U	Mb
Sample ID: SMW56-TMW05-SO15	Collec	ted: 12/7/2	012 12:30	0:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	5.7	J	8.1	LOD	16	LOQ	ug/Kg	U	Mb
CARBON DISULFIDE	0.53	J	0.81	LOD	4.1	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW01-SO05	Collec	ted: 12/6/2	012 9:00:	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	9.6	J	11	LOD	22	LOQ	ug/Kg	J	RI
Sample ID: SWMU56-TMW01-SO06	Collec	ted: 12/6/2	012 9:10:	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	7.7	J	7.8	LOD	16	LOQ	ug/Kg	U	Mb
Sample ID: SWMU56-TMW01-SO07	Collec	ted: 12/6/2	012 8:43:	:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRIMETHYLBENZENE	0.61	JQ	0.76	LOD	3.8	LOQ	ug/Kg	J	RI, Surr
2-BUTANONE	13	J	4.9	LOD	15	LOQ	ug/Kg	J	RI, Surr
ACETONE	96		7.6	LOD	15	LOQ	ug/Kg	J	Surr
CARBON DISULFIDE	0.44	J	0.76	LOD	3.8	LOQ	ug/Kg	J	RI, Surr
NAPHTHALENE	1.3	JQ	0.76	LOD	3.8	LOQ	ug/Kg	J	RI, Surr
Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:32	2:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	20	J	7.1	LOD	22	LOQ	ug/Kg	J	RI, Surr
ACETONE	97		11	LOD	22	LOQ	ug/Kg	J	Surr
CARBON DISULFIDE	0.87	J	1.1	LOD	5.6	LOQ	ug/Kg	J	RI, Surr
CIS-1,2-DICHLOROETHENE	120		1.1	LOD	5.6	LOQ	ug/Kg	J	Surr
TOLUENE	1.2	J	1.1	LOD	5.6	LOQ	ug/Kg	J	RI, Surr

* denotes a non-reportable result

### Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

EDD Filename: 280-36819-1_BayWest

#### eQAPP Name: Bay West-Joint Base Andrews_20130129

Method Category: VOA

Sample ID: SWMU56-TMW02-SO08	Collec	ted: 12/6/2	012 11:32	2:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TRANS-1,2-DICHLOROETHENE	9.6		1.1	LOD	5.6	LOQ	ug/Kg	J	Surr
Sample ID: SWMU56-TMW02-SO09	Collec	ted: 12/6/2	012 11:47	7:00 A	nalysis T	ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	6.4	J	8.0	LOD	16	LOQ	ug/Kg	U	Mb
Sample ID: SWMU56-TMW09-SO10	Collec	<i>ted:</i> 12/6/2	012 2:30:	:00 A	nalysis T	'ype: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	7.5	J	9.8	LOD	20	LOQ	ug/Kg	U	Mb

## Method Category: VOA

Sample ID: SMWU56-AQTB03	Collec	ted: 12/6/2	012 9:00	:00 A	nalysis 1	<b>Type:</b> Initia	al/TOT	l	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CIS-1,2-DICHLOROETHENE	0.60	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
METHYLENE CHLORIDE	0.54	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb
TRICHLOROFLUOROMETHANE	1.3	J	0.80	LOD	2.0	LOQ	ug/L	J	RI
Sample ID: SMWU56-AQTBQ04	Collec	ted: 12/7/2	012 8:05	:00 A	nalysis 1	<i>ype:</i> Initia	al/TOT	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
METHYLENE CHLORIDE	0.52	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb
Sample ID: SWMU56-TMW03-GW09	Collec	ted: 12/6/2	012 9:50	:00 A	nalysis 1	<i>Type:</i> Initia	al/TOT	I	Dilution: 1
	Lab	Lab		DI		ы		Data	Baaaan

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
METHYLENE CHLORIDE	0.44	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb, Tb

## Lab Reporting Batch ID: 280-36819-1

### Laboratory: TAL DEN

## EDD Filename: 280-36819-1_BayWest

## eQAPP Name: Bay West-Joint Base Andrews_20130129

## Method Category: VOA

Sample ID: SWMU56-TMW04-GW10	Collec	ted: 12/6/2	012 11:1	5:00 A	nalysis T	ype: Initia	al/TOT/TO	от и	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.17	J	0.20	LOD	1.0	LOQ	ug/L	J	RI
CIS-1,2-DICHLOROETHENE	0.49	J	0.20	LOD	1.0	LOQ	ug/L	U	Tb
METHYLENE CHLORIDE	0.53	J	0.40	LOD	5.0	LOQ	ug/L	U	Mb, Tb
NAPHTHALENE	0.28	J	0.80	LOD	1.0	LOQ	ug/L	U	Mb
TRICHLOROETHENE	4.2		0.20	LOD	1.0	LOQ	ug/L	U	Tb
TRICHLOROFLUOROMETHANE	0.93	J	0.80	LOD	2.0	LOQ	ug/L	U	Tb

## Lab Reporting Batch ID: 280-36819-1 EDD Filename: 280-36819-1_BayWest

Laboratory: TAL DEN

eQAPP Name: Bay West-Joint Base Andrews_20130129

## **Reason Code Legend**

Reason Code	Description
Fd	Field Duplicate Precision
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Upper Estimation
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

# Appendix E

## Laboratory Analytical Packages

## (on attached DVD)

Appendix F

**Regulatory Comment Form** 

Response to Comments for the SWMU 56 Draft Final Phase I Remedial Investigation Performance-Based Restoration Joint Base Andrews, Camp Springs, Maryland September 2013

Comment #	Page	Section/ Paragraph/ Line No.	Comment	A, D, E, FD or X ¹	Response	D ² D ²
PGCHD (K€	en Clar	e) – Commen	PGCHD (Ken Clare) – Comments Received: 17 October 2013			
~		Executive Summary	In reference to the statement: "groundwater at Bldg. 3459 AOI was not investigated because possible herbicide and pesticide contamination would be limited to surface soils." I don't understand how herbicides and pesticides couldn't potentially contaminate the groundwater.	ш	The Phase I RI objective is to determine whether hazardous substances were released to the environment and/or whether hazardous substances have impacted the environment exceeding human health or environmental exposure criteria in accordance with the SWMU 56 Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP; Bay West, 2012). Groundwater samples at the Building 3459 AOI were not included in the scope of the Phase I RI.	
N		Acronyms and Abbreviation s	MCPP = meta-chlorophenylpiperazine. In the Executive Summary: Groundwater samples at the Civil Engineering Storage Yard AOI detected MCPP, identified as a herbicide. I looked into this and found out that meta-chlorophenylpiperazine is a recreational drug and stimulant. Methyl chlorophenoxypropionic acid (Mecoprop) is a herbicide	A	The definition of MCPP was revised to 2-4-chloro-2- methylphenoxypropanoic acid in the acronym list and throughout the report.	
3		Section 1.3	Site Location and Description: 3rd paragraph, 1st sentence: North Carolina Street should be NC Avenue	A	Page 1-3, Section 1.3 Site Location and Description, Paragraph 3, North Caroline Street was changed to North Carolina Avenue.	
4	28	Section 4.3.2.1.1	delta BHC is not described in the Acronyms and Abbreviations. I believe it is delta benzene hexachloride. 4,4'-DDD and 4,4'-DDE are mentioned in the A & A, but their first use in context, the spelling is omitted.	A	Delta BHC - delta-hexachlorocyclohexane was added to the acronym list and was defined on its first use in context on Page 4-8. 4,4'-DDD is defined on its first use in context on Page 4-4. 4,4'-DDE is defined on its first use in context on Page 4-4	
End of comments	nments					

 $^{1}A$  = agree D = disagree E = explanation FD = needs further discussion X = take exception to 1 1